南華大乳 UNIVERSITY OF SOUTH CHINA 土木工程学院 建筑电气与智能化专业 教学大纲汇编 南华大学教务处 2017年9月
土木工程学院 建筑电气与智能化专业 教学大纲汇编 南华大学教务处 2017 年 9 月
目录 1.学科基础课平台必修课. 1 《高等数学A1》课程教学大纲】 .1 《高等数学A1》课程考试大纲 56454444544446145411541445404455444446464* 《高等数学A2》课程教学大纲 10 《高等数学A2》课程考试大纲. 16 《大学物理A1》课程教学大纲. 19 《大学物理A1》课程考试大纲 27 《大学物理A2》课程教学大纲 30 《大学物理A2》课程考试大织 440444 《大学物理实验》课程实践教学大纲 42 《金工实训B》课程教学大纲 ..57 《模拟电子技术B》课程教学大纲 .69 《模拟电子技术B》课程实践教学大纲 ,78 《模拟电子技术B》课程考试大纲」 84 88 .94 《数字电子技术B》课程实践教学大纲 97 《电路原理A》课程教学大纲 103 《电路原理A》课程实践教学大纲 115 《自动控制原理A》课程教学大纲 《自动控制原理A》课程实践教学大纲。 《自动控制原理A》课程考试大纲… 138 《画法几何及建筑制图》课程教学大纲 .141 《画法几何及建筑制图》课程考试大纲 154 《由丁由子立训》里程数学大烟 课程教学大纲 178 2.学科基础课平台选修课。 181 《单片机原理及应用A》课程教学大纲 《单片机原理技术及应用A》课程实践教学大纲 18 《电气安全工程》课程教学大纲… 211 《电气安全工程》课程考试大纲. 216 《复变函数与积分变换》课程教学大纲 .219 《复变函数与积分变换》课程考试大纲, 225 《文献检索》课程教学大纲】 《电机与电力拖动》课程教学大纲 《电机与电力拖动》课程实践教学大纲 239 《电机与电力拖动》课程考试大纲 .242 《建筑电气英语》课程教学大纲 .245
I 目 录 1.学科基础课平台必修课............................................................................ 1 《高等数学 A1》课程教学大纲................................................................................. 1 《高等数学 A1》课程考试大纲................................................................................. 7 《高等数学 A2》课程教学大纲............................................................................... 10 《高等数学 A2》课程考试大纲............................................................................... 16 《大学物理 A1》课程教学大纲............................................................................... 19 《大学物理 A1》课程考试大纲............................................................................... 27 《大学物理 A2》课程教学大纲............................................................................... 30 《大学物理 A2》课程考试大纲............................................................................... 39 《大学物理实验》课程实践教学大纲 .................................................................... 42 《金工实训 B》课程教学大纲 ................................................................................. 57 《模拟电子技术 B》课程教学大纲 ......................................................................... 69 《模拟电子技术 B》课程实践教学大纲 ................................................................. 78 《模拟电子技术 B》课程考试大纲 ......................................................................... 84 《数字电子技术 B》课程教学大纲 ......................................................................... 88 《数字电子技术 B》课程考试大纲 ......................................................................... 94 《数字电子技术 B》课程实践教学大纲 ................................................................. 97 《电路原理 A》课程教学大纲............................................................................... 103 《电路原理 A》课程实践教学大纲....................................................................... 115 《自动控制原理 A》课程教学大纲....................................................................... 127 《自动控制原理 A》课程实践教学大纲............................................................... 133 《自动控制原理 A》课程考试大纲....................................................................... 138 《画法几何及建筑制图》课程教学大纲 .............................................................. 141 《画法几何及建筑制图》课程考试大纲 .............................................................. 154 《电工电子实训》课程教学大纲 .......................................................................... 158 《概率论与数理统计 B》课程教学大纲 ............................................................... 171 《概率论与数理统计 B》课程考试大纲 ............................................................... 178 2.学科基础课平台选修课........................................................................ 181 《单片机原理及应用 A》课程教学大纲............................................................... 181 《单片机原理技术及应用 A》课程实践教学大纲 ............................................... 186 《电气安全工程》课程教学大纲 .......................................................................... 211 《电气安全工程》课程考试大纲 .......................................................................... 216 《复变函数与积分变换》课程教学大纲 .............................................................. 219 《复变函数与积分变换》课程考试大纲 .............................................................. 225 《文献检索》课程教学大纲 .................................................................................. 228 《电机与电力拖动》课程教学大纲 ...................................................................... 234 《电机与电力拖动》课程实践教学大纲 .............................................................. 239 《电机与电力拖动》课程考试大纲 ...................................................................... 242 《建筑电气英语》课程教学大纲 .......................................................................... 245
《建筑电气与智能化专业导论》课程教学大纲 .250 《建筑智能环境学》课程教学大纲」 257 《建筑智能环境学》课程考试大纲 《电工电子技术c》 课程教学 《电工电子技术c》课程考试大纲 273 《电工电子技术C》课程实践教学大纲 .276 《建筑概论》课程教学大纲、 .281 《材料力学B》里程教学大枫 289 《材料力学B》课程考试大级 294 3.专业课平台必修课 296 《建筑供配电与照明技术》课程教学大纲 .296 《律销供配由与昭明技术》课程考试大纱 201 《建筑供配电与照明技术》课程设计教学大纲 《楼宇自动化技术》课程教学大纲 306 《楼宇自动化技术》课程实践教学大纲 .310 《楼宇自动化技术》课程考试大纲 .317 《计算机网络通信》课程教学大纲 324 《计算机网络通信》课程实验教学大纲 《计算机控制技术》 课程教学大纲 335 《计算机控制技术》课程实践教学大纲 342 《计算机控制技术》课程考试大纲. .347 《建筑电气与智能化认知实习》课程实习教学大纲】 .349 《建筑电气生产实习》课程教学大纲 351 《建筑电气毕业实习》教学大纲 《建筑电气与智能化专业毕业设计 (论文)》教学大纲 357 《建筑电气控制技术及PLC应用》课程教学大纲. ,362 《建筑电气控制技术及PLC应用》课程考试大纲, .367 《建筑设备控制技术》课程教学大纲 370 《建沿控制持术》里提老试大 376 《暖通空调》课程教学 大纲 379 《暖通空调》课程考试大纲 384 《暖通空调》课程设计教学大纲 .388 4.专业课平台选修课 391 《建筑给排水与消防工程》课程教学大纸 391 《建筑节能B》 课程教学大 ,400 《工程建设监理B》课程教学大纲. .406 《建筑工程经济学》课程教学大纲 .412 《可持续建筑技术》课程教学大纲 418 《BIM软件操作与实践》课程教学大 《电气 程概预算》 课程教学大纲 .426 《建筑电气施工技术》课程教学大纲 434 《建筑影音应用系统》课程教学大纲 .441
II 《建筑电气与智能化专业导论》课程教学大纲 .................................................. 250 《建筑智能环境学》课程教学大纲 ...................................................................... 257 《建筑智能环境学》课程考试大纲 ...................................................................... 264 《电工电子技术 C》课程教学大纲 ....................................................................... 267 《电工电子技术 C》课程考试大纲 ....................................................................... 273 《电工电子技术 C》课程实践教学大纲 ............................................................... 276 《建筑概论》课程教学大纲 .................................................................................. 281 《材料力学 B》课程教学大纲 ............................................................................... 289 《材料力学 B》课程考试大纲 ............................................................................... 294 3.专业课平台必修课 ............................................................................... 296 《建筑供配电与照明技术》课程教学大纲 .......................................................... 296 《建筑供配电与照明技术》课程考试大纲 .......................................................... 301 《建筑供配电与照明技术》课程设计教学大纲 .................................................. 304 《楼宇自动化技术》课程教学大纲 ...................................................................... 306 《楼宇自动化技术》课程实践教学大纲 .............................................................. 310 《楼宇自动化技术》课程考试大纲 ...................................................................... 317 《计算机网络通信》课程教学大纲 ...................................................................... 324 《计算机网络通信》课程实验教学大纲 .............................................................. 331 《计算机控制技术》课程教学大纲 ...................................................................... 335 《计算机控制技术》课程实践教学大纲 .............................................................. 342 《计算机控制技术》课程考试大纲 ...................................................................... 347 《建筑电气与智能化认知实习》课程实习教学大纲 .......................................... 349 《建筑电气生产实习》课程教学大纲 .................................................................. 351 《建筑电气毕业实习》教学大纲 .......................................................................... 354 《建筑电气与智能化专业毕业设计(论文)》教学大纲 .................................... 357 《建筑电气控制技术及 PLC 应用》课程教学大纲............................................... 362 《建筑电气控制技术及 PLC 应用》课程考试大纲............................................... 367 《建筑设备控制技术》课程教学大纲 .................................................................. 370 《建筑设备控制技术》课程考试大纲 .................................................................. 376 《暖通空调》课程教学大纲 .................................................................................. 379 《暖通空调》课程考试大纲 .................................................................................. 384 《暖通空调》课程设计教学大纲 .......................................................................... 388 4.专业课平台选修课 ............................................................................... 391 《建筑给排水与消防工程》课程教学大纲 .......................................................... 391 《建筑节能 B》课程教学大纲 ............................................................................... 400 《工程建设监理 B》课程教学大纲 ....................................................................... 406 《建筑工程经济学》课程教学大纲 ...................................................................... 412 《可持续建筑技术》课程教学大纲 ...................................................................... 418 《BIM 软件操作与实践》课程教学大纲............................................................... 421 《电气工程概预算》课程教学大纲 ...................................................................... 426 《建筑电气施工技术》课程教学大纲 .................................................................. 434 《建筑影音应用系统》课程教学大纲 .................................................................. 441
《电梯系统控制》课程教学大纲」 .446 《电梯系统控制》课程实践教学大纲 451 《建筑电气CAD实训》课程实践教学大纲 《CATV电视系统》课程教学大纲. .460
III 《电梯系统控制》课程教学大纲 .......................................................................... 446 《电梯系统控制》课程实践教学大纲 .................................................................. 451 《建筑电气 CAD 实训》课程实践教学大纲.......................................................... 455 《CATV 电视系统》课程教学大纲 ......................................................................... 460
1.学科基础课平台必修课 《高等数学A1》课程教学大纲 Higher Mathematics Al 课程编号:130704003 学时:80 学分:5.0 适用对橡:理工科各专业 先修课程:无 一、课程的性质和任务 该课程可以支撑毕业要求第1、2条的达成。 本课程是学校理工科各专业的一门必修的重要的公共基础课。通过这门课程的学习,要使 学生系统地获得一元函数微积分的基本知识,基础理论和常用的运算方法,并注意培养学生比 较熟练的运算能力、抽象思维能力、逻辑推理能力能力,从而使学生受到数学方法训练和运用 这些方法解决几何、力学和物理等实际问题的初步训练,为学习后继课程和进一步扩大数学知 识奠定必要的数学基础。 二、教学目的与要求 教学中应认真贯彻“以应用为目的,以必需够用为度”的原则,教学重点放在“掌握概念, 强化应用,培养能力,提高素质”上。 教学目的:逐步培养学生具有比较熟练的基本运算能力、综合运用所学知识分析和解决实 际问题的能力、数学建模及使用计算机求解数学模型的能力、初步抽象概括问题的能力、自主 学习的能力以及一定的逻辑推理能力,使学生在掌握数学知识的同时,尽量多地理解数学思想、 明晰数学方法、建立数学思维。 教学要求:1、使学生掌握本课程的基本概念、基本理论和基本运算,为学习各专业课程提 供必要的工具:2、逐步培养学生具有比较熟练的基本运算能力、综合运用所学知识分析和解决 实际问愿的能力、数学建模及使用计算机求解数学模型的能力、初步抽象概括问题的能力、自 主学习的能力以及一定的逻辑推理能力,使学生在掌握数学知识的同时,尽量多地理解数学思 想、明晰数学方法、建立数学思维。 理解和掌握函数的相关性质、极限的概念、导数与微分的概念、中值定理及导数的应用、 不定积分、定积分:熟练掌握复合函数的复合过程、基本初等函数的简单性质及其图象、两个 重要极限求极限的方法、基本初等函数的导数基本公式、四则运算法则以及复合函数的求导方
1 1.学科基础课平台必修课 《高等数学 A1》课程教学大纲 Higher Mathematics A1 课程编号:130704003 学时:80 学分:5.0 适用对象:理工科各专业 先修课程:无 一、课程的性质和任务 该课程可以支撑毕业要求第 1、2 条的达成。 本课程是学校理工科各专业的一门必修的重要的公共基础课。通过这门课程的学习,要使 学生系统地获得一元函数微积分的基本知识,基础理论和常用的运算方法,并注意培养学生比 较熟练的运算能力、抽象思维能力、逻辑推理能力能力,从而使学生受到数学方法训练和运用 这些方法解决几何、力学和物理等实际问题的初步训练,为学习后继课程和进一步扩大数学知 识奠定必要的数学基础。 二、教学目的与要求 教学中应认真贯彻“以应用为目的,以必需够用为度”的原则,教学重点放在“掌握概念, 强化应用,培养能力,提高素质”上。 教学目的:逐步培养学生具有比较熟练的基本运算能力、综合运用所学知识分析和解决实 际问题的能力、数学建模及使用计算机求解数学模型的能力、初步抽象概括问题的能力、自主 学习的能力以及一定的逻辑推理能力,使学生在掌握数学知识的同时,尽量多地理解数学思想、 明晰数学方法、建立数学思维。 教学要求:1、使学生掌握本课程的基本概念、基本理论和基本运算,为学习各专业课程提 供必要的工具;2、逐步培养学生具有比较熟练的基本运算能力、综合运用所学知识分析和解决 实际问题的能力、数学建模及使用计算机求解数学模型的能力、初步抽象概括问题的能力、自 主学习的能力以及一定的逻辑推理能力,使学生在掌握数学知识的同时,尽量多地理解数学思 想、明晰数学方法、建立数学思维。 理解和掌握函数的相关性质、极限的概念、导数与微分的概念、中值定理及导数的应用、 不定积分、定积分;熟练掌握复合函数的复合过程、基本初等函数的简单性质及其图象、两个 重要极限求极限的方法、基本初等函数的导数基本公式、四则运算法则以及复合函数的求导方
法、洛必达法则求“0/0”、“c/四”、“0X四”、“四-四”、“1四”、“00”和“0” 型未定式的极限方法、不定积分第一换元法、第二换元法、牛顿一莱布尼茨公式、定积分的换 元积分法与分部积分法:理解和掌握定积的元素法、定积分在几何和物理上的应用:熟练掌握 常见一阶微分方程的解法以及高阶常系数微分方程、特别是二阶常系数线性方程的解法。 三、教学内容 第一章函数与极限 1.基本内容: 函数概念、函数的性质,复合函数:极限,左右极限,无穷小量,无穷大量,极限的四则 运算,两个极限存在准则,两个重要极限:连续性,连续函数的运算性质,基本初等函数和闭 区间上连续函数的性质(最大值,最小值定理和介值定理)。 2教学基本要求: 理解函数的概念,函数在一点连续的概念:熟悉基本初等函数的性质及其图形:了解反函 数、复合函数概念,极限的ε-N,£-百定义(对于给出E求N或ō不作过高要求),并能在学 习过程中逐步加深对极限思想的理解,两个极限存在准则,无穷小、无穷大概念,初等函数的 连续性:掌握极限四则运算法则及无穷小的比较:知道在闭间区上连续函数的性质:会用两个 重要极限求极限,会判断间断点的类型,能列出简单实际问题中的函数关系。 3.教学重点难点: 函数的概念、极限的ε-N,£-百定义:连续函数的性质:两个重要极限求极限,判断间断 点的类型,列出简单实际问题中的函数关系:难点为函数极限的E水,£百定义。 4.教学建议:函数极限的e-N,£百定义不作考试要求。 第二章导数与微分 1.基本内容: 导数概念,导数的几何意义,可导性与连续性之间的关系,导数的运算法则(四则运算、 复合运算、求反函数导数法则),基本初等函数的导数公式,高阶导数,隐函数的导数,对数求 导法,由参数方程所确定的函数的导数,微分概念及其运算法则(包括一阶微分形式不变性), 微分在近似计算及误差估计中的应用。高阶导数的概念,高阶导数的运算法则,参数方程及隐 函数的高阶导数,高阶微分。 2.教学基本要求: 理解导数和微分概念:熟悉导数和微分的运算法则(包括一阶微分形式不变性)和导数的 基本公式,熟练地求初等函数的一阶,二阶导数:了解导数的几何意义,函数的可导性与连续
2 法、洛必达法则求“0/0”、“∞/ ∞”、“0×∞”、“∞-∞”、“1∞”、“00”和“∞0” 型未定式的极限方法、不定积分第一换元法、第二换元法、牛顿—莱布尼茨公式、定积分的换 元积分法与分部积分法;理解和掌握定积的元素法、定积分在几何和物理上的应用;熟练掌握 常见一阶微分方程的解法以及高阶常系数微分方程、特别是二阶常系数线性方程的解法。 三、教学内容 第一章 函数与极限 1.基本内容: 函数概念、函数的性质,复合函数;极限,左右极限,无穷小量,无穷大量,极限的四则 运算,两个极限存在准则,两个重要极限;连续性,连续函数的运算性质,基本初等函数和闭 区间上连续函数的性质(最大值,最小值定理和介值定理)。 2.教学基本要求: 理解函数的概念,函数在一点连续的概念;熟悉基本初等函数的性质及其图形;了解反函 数、复合函数概念,极限的ε -N,ε -δ 定义(对于给出ε 求 N 或δ 不作过高要求),并能在学 习过程中逐步加深对极限思想的理解,两个极限存在准则,无穷小、无穷大概念,初等函数的 连续性;掌握极限四则运算法则及无穷小的比较;知道在闭间区上连续函数的性质;会用两个 重要极限求极限,会判断间断点的类型,能列出简单实际问题中的函数关系。 3.教学重点难点: 函数的概念、极限的ε -N,ε -δ 定义;连续函数的性质;两个重要极限求极限,判断间断 点的类型,列出简单实际问题中的函数关系;难点为函数极限的ε -N,ε -δ 定义。 4.教学建议:函数极限的ε -N,ε -δ 定义不作考试要求。 第二章 导数与微分 1.基本内容: 导数概念,导数的几何意义,可导性与连续性之间的关系,导数的运算法则(四则运算、 复合运算、求反函数导数法则),基本初等函数的导数公式,高阶导数,隐函数的导数,对数求 导法,由参数方程所确定的函数的导数,微分概念及其运算法则(包括一阶微分形式不变性), 微分在近似计算及误差估计中的应用。高阶导数的概念,高阶导数的运算法则,参数方程及隐 函数的高阶导数,高阶微分。 2.教学基本要求: 理解导数和微分概念;熟悉导数和微分的运算法则(包括一阶微分形式不变性)和导数的 基本公式,熟练地求初等函数的一阶,二阶导数;了解导数的几何意义,函数的可导性与连续
性的关系,高阶导数概念:掌握隐函数和参数式所确定的函数的一阶、二阶导数的求法。 3.教学重点难点: 理解导数和微分概念,函数的可导性与连续性的关系:高阶导数的概念,高阶导数的运算 法则,参数方程及隐函数的高阶导数,高阶微分。高阶导数概念,导数的几何意义:难点为高 阶导数,高阶微分的求解。 4.教学建议:微分在近似计算中的应用不作考试要求。 第三章徽分中值定理与导数的应用 1.基本内容: 罗尔定理,格朗日定理,柯西定理,带有拉格朗日余项的泰勒公式。导数的应用,罗必达 法则,函数增减性判定法,函数的极值及其求法,最大值,最小值问题,函数图形的凹凸及其 判定法,拐点及其求法,水平与垂直渐连线,函数图形的描绘,弧微分,曲率定义及其计算公 式,曲率圆与曲率半径,曲奉中心,求方程近似解的二分法和切线法。 2.教学基本要求: 理解罗尔定理,拉格朗日定理,函数的极值概念:熟悉柯西定理、泰勒定理:掌握求函数的 极值,判断函数的增减性与函数图形的凹凸性,求函数图形的拐点的方法:知道曲率和曲率半 径的概念,求方程近似解的二分法和切线法:能用导数描述一些物理量,会应用拉格朗日定理, 能描绘函数的图形,会解数简单的最大值和最小值问题,会计算曲率和曲率半径。 3.教学重点难点: 掌握函数的极值的计算方法,判断函数的增减性与函数图形的凹凸性,求函数图形的拐点 的方法。熟悉函数图形的描绘。难点为柯西定理、泰勒定理:曲率和曲率半径的计算:函数作 4.教学建议:泰勒公式不作考试要求。 第四章不定积分 1.基本内容: 不定积分的概念,性质,基本积分公式,换元积分法,分部积分法,有理函数、三角函数, 有理函数及简单的无理函数的积分举例! 2.教学基本要求: 理解不定积分的概念和性质,掌握基本积分公式,换元积分法,分部积分法:了解有理函 数的积分,可化为有理函数的积分 3.教学重点难点:
3 性的关系,高阶导数概念;掌握隐函数和参数式所确定的函数的一阶、二阶导数的求法。 3.教学重点难点: 理解导数和微分概念,函数的可导性与连续性的关系;高阶导数的概念,高阶导数的运算 法则,参数方程及隐函数的高阶导数,高阶微分。高阶导数概念,导数的几何意义;难点为高 阶导数,高阶微分的求解。 4.教学建议:微分在近似计算中的应用不作考试要求。 第三章 微分中值定理与导数的应用 1.基本内容: 罗尔定理,格朗日定理,柯西定理,带有拉格朗日余项的泰勒公式。导数的应用,罗必达 法则,函数增减性判定法,函数的极值及其求法,最大值,最小值问题,函数图形的凹凸及其 判定法,拐点及其求法,水平与垂直渐连线,函数图形的描绘,弧微分,曲率定义及其计算公 式,曲率圆与曲率半径,曲率中心,求方程近似解的二分法和切线法。 2.教学基本要求: 理解罗尔定理,拉格朗日定理,函数的极值概念;熟悉柯西定理、泰勒定理;掌握求函数的 极值,判断函数的增减性与函数图形的凹凸性,求函数图形的拐点的方法;知道曲率和曲率半 径的概念,求方程近似解的二分法和切线法;能用导数描述一些物理量,会应用拉格朗日定理, 能描绘函数的图形,会解数简单的最大值和最小值问题,会计算曲率和曲率半径。 3.教学重点难点: 掌握函数的极值的计算方法,判断函数的增减性与函数图形的凹凸性,求函数图形的拐点 的方法。熟悉函数图形的描绘。难点为柯西定理、泰勒定理;曲率和曲率半径的计算;函数作 图。 4.教学建议:泰勒公式不作考试要求。 第四章 不定积分 1.基本内容: 不定积分的概念,性质,基本积分公式,换元积分法,分部积分法,有理函数、三角函数, 有理函数及简单的无理函数的积分举例。 2.教学基本要求: 理解不定积分的概念和性质,掌握基本积分公式,换元积分法,分部积分法;了解有理函 数的积分,可化为有理函数的积分。 3.教学重点难点:
不定积分的概念,性质,基本积分公式,换元积分法,分部积分法。第二类换元积分法, 有理函数积分法。 4.教学建议:对于有理函数积分,只要求学生学会最简单的有理函数积分。 第五章定积分 1.基本内容: 定积分概念、性质,积分变上限的函数及其求导定理,牛顿一莱布尼兹公式,定积分的换 元法与分部积公法,定积分的近似计算(矩形法、梯形法、抛物线法),广义积分,定积分在几 何学中的应用(面积、弧长、平行截面面积已知的主体的体积),定积分在物理学中的应用举例 (功、水的静压力、引力)。 2教学基本要求: 理解定积分的概念和性质,积分变上限的函数及其求导定理。熟悉牛顿一莱布尼兹公式, 定积分的换元法与分部积公法,定积分的近似计算。 3.教学重点难点: 定积分的概念,性质,基本积分公式,换元积分法,分部积分法:广义积分,定积分在几 何学中的应用。定积分的换元法与分部积公法及应用:难点为反常积分。 4,教学建议:反常积分的敛散性不应作为重点。 第六章定积分的应用 1.基本内容 定积分的元素法:定积分在几何上的应用:平面图形的面积,特殊立体的体积,平面曲线 的弧长:定积分在物理上的应用。 2.教学基本要求: 熟练掌握利用定积分的微元法求解平面图形的面积,特殊立体的体积,平面曲线的弧长: 定积分在物理上的应用等实际问题。 3.教学重点难点: 定积分的微元法。利用微元法求解面积、体积 4.教学建议:定积分的微元法应该重点讲解,并适当引申。 第七章常微分方程 1.基本内容 微分方程的定义,阶、解、通解、初始条件,特解。变量可分离的方程,齐次方程,一阶
4 不定积分的概念,性质,基本积分公式,换元积分法,分部积分法。第二类换元积分法, 有理函数积分法。 4.教学建议:对于有理函数积分,只要求学生学会最简单的有理函数积分。 第五章 定积分 1.基本内容: 定积分概念、性质,积分变上限的函数及其求导定理,牛顿一莱布尼兹公式,定积分的换 元法与分部积公法,定积分的近似计算(矩形法、梯形法、抛物线法),广义积分,定积分在几 何学中的应用(面积、弧长、平行截面面积已知的主体的体积),定积分在物理学中的应用举例 (功、水的静压力、引力)。 2.教学基本要求: 理解定积分的概念和性质,积分变上限的函数及其求导定理。熟悉牛顿一莱布尼兹公式, 定积分的换元法与分部积公法,定积分的近似计算。 3.教学重点难点: 定积分的概念,性质,基本积分公式,换元积分法,分部积分法;广义积分,定积分在几 何学中的应用。定积分的换元法与分部积公法及应用;难点为反常积分。 4.教学建议:反常积分的敛散性不应作为重点。 第六章 定积分的应用 1.基本内容: 定积分的元素法;定积分在几何上的应用;平面图形的面积,特殊立体的体积,平面曲线 的弧长;定积分在物理上的应用。 2.教学基本要求: 熟练掌握利用定积分的微元法求解平面图形的面积,特殊立体的体积,平面曲线的弧长; 定积分在物理上的应用等实际问题。 3.教学重点难点: 定积分的微元法。利用微元法求解面积、体积。 4.教学建议:定积分的微元法应该重点讲解,并适当引申。 第七章 常微分方程 1.基本内容: 微分方程的定义,阶、解、通解、初始条件,特解。变量可分离的方程,齐次方程,一阶
线性方程,伯努利方程和全微分方程。可降阶的高阶微分方程:y=f(x、y”=f(x,y), y”=(y,y)。线性微分方程的解的结构,二阶常系数齐次线性微分方程,二阶常系数非齐次 线性微分方程,欧拉方程,常系数线性微分方程组解法举例。 2.教学基本要求: 熟练掌握变量可分离的方程及一阶线性方程的解法,二阶常系数齐次线性微分方程的解法。 了解微分方程、解、通解,初始条件和特解等概念,二阶线性微分方程解的结构。掌握自由项 为多项式,指数函数,正弦函数,余弦函数以及它们的乘积的二阶常系数非齐次线性微分方程 的解法。知道下列几种特殊的高阶方程y=f(x),y=f(x,y),y=f(y,y)的解法, 微分方程的幂级数解法,高阶常系数齐次线性微分方程的解法。会识别下列几种一阶微分方程, 变量可分离的方程,齐次方程一阶线性方程,伯努利方程和全微分方程,会解齐次方程和伯努 利方程,会解较简单的全微分方程,会用微分方程解一些简单的几何和物理问题。 3.教学重点难点: 微分方程、通解的定义:一阶线性方程的解法,二阶常系数齐次线性微分方程的解法。微分方 程的求解。 4,教学建议:欧拉方程可以不讲。 四、教学环节与学时分配 其 中 课外铺 序 总学 导/ 教学内容 时 讲课 实验 上机 其他 课外实 备注 践 第一章函数、极限 16 14 连续 2第二章导数与微分 1210 0 0 0 第三意 中值定理与 14 12 导数的应 “其它” 4第四章不定积分 108 00 主要方式 5第五章定积分 00 为习题课 第六章 定积分的应 7 第七意常微分方程 1210 0 0 机动(阶段复习备用) 0 0 共计 80 66 0 0 14 五、教学中应注意的问愿: 通过教学要实现传授知识和发展能力两方面的教学目的,能力培养要贯穿教学全过程。教
5 线性方程,伯努利方程和全微分方程。可降阶的高阶微分方程:y (n) =f(x)、 y f( x,y ) , y f( y,y ) 。线性微分方程的解的结构,二阶常系数齐次线性微分方程,二阶常系数非齐次 线性微分方程,欧拉方程,常系数线性微分方程组解法举例。 2.教学基本要求: 熟练掌握变量可分离的方程及一阶线性方程的解法,二阶常系数齐次线性微分方程的解法。 了解微分方程、解、通解,初始条件和特解等概念,二阶线性微分方程解的结构。掌握自由项 为多项式,指数函数,正弦函数,余弦函数以及它们的乘积的二阶常系数非齐次线性微分方程 的解法。知道下列几种特殊的高阶方程 y (n) =f(x), y f( x,y ) , y f( y,y ) 的解法, 微分方程的幂级数解法,高阶常系数齐次线性微分方程的解法。会识别下列几种一阶微分方程, 变量可分离的方程,齐次方程一阶线性方程,伯努利方程和全微分方程,会解齐次方程和伯努 利方程,会解较简单的全微分方程,会用微分方程解一些简单的几何和物理问题。 3.教学重点难点: 微分方程、通解的定义;一阶线性方程的解法,二阶常系数齐次线性微分方程的解法。微分方 程的求解。 4.教学建议:欧拉方程可以不讲。 四、教学环节与学时分配 序 号 教学内容 总学 时 其 中 课外辅 导/ 课外实 践 备 注 讲课 实验 上机 其他 1 第一章 函数、极限、 连续 16 14 0 0 2 0 “其它” 主要方式 为习题课 2 第二章 导数与微分 12 10 0 0 2 0 3 第三章 中值定理与 导数的应用 14 12 0 0 2 0 4 第四章 不定积分 10 8 0 0 2 0 5 第五章 定积分 8 8 0 0 0 0 6 第六章 定积分的应 用 6 4 0 0 2 0 7 第七章 常微分方程 12 10 0 0 2 0 8 机动(阶段复习备用) 2 0 0 0 2 0 共 计 80 66 0 0 14 0 五、教学中应注意的问题: 通过教学要实现传授知识和发展能力两方面的教学目的,能力培养要贯穿教学全过程。教
学中注意满足不同层次学生的不同要求,积极为学生终身学习搭建平台、拓展空间。不仅把数 学课程当作重要的基础课和工具课,更将其视为一门素质课。教学中要结合教学内容及学生特 点,选择适宜的教学方法与教学手段,突出重点、化解难点,有意识、有目的、有重点地营造 有利于学生能力发展的氛围,启发学生思维,促进学生能力的提高。并通过教研活动统一教学 行为。 六、实验/实践内容:无 七、考核方式: 考试采用闭卷考试形式。内容包括基本概念,基础理论,分析计算,题型分为填空、选择 计算或解答题,证明等方式,题目的难易程度要视学生的实际情况而定。■ 总评成绩:平时学习过程的考核占30%,理论闭卷考试成绩占70%,其中平时学习过程包 括平时作业(占总成绩的20%),考勤(占总成绩的5%),课堂表现及课后互动(占总成绩的5%)。 八、教材及主要参考书: 1、选用教材: 《高等数学》(止下册,第六版)同济大学主编,高等教有出版社,2007年。 2、主要参考书: [1)《高等数学》吴赣昌等,《数学物理方程》,中国人民大学出版社,2009年。 2)1《高等数学》上下册黄立宏等编,复旦大学出版社,2009年。 31《数学分析》陈纪修,高等教有出版社,2005年。 4《数学复习指南》,陈文灯等编,世界图书出版社,2010年。 九、教改说明及其他:无 执笔人:黄宠辉系室审核人:廖茂新 6
6 学中注意满足不同层次学生的不同要求,积极为学生终身学习搭建平台、拓展空间。不仅把数 学课程当作重要的基础课和工具课,更将其视为一门素质课。教学中要结合教学内容及学生特 点,选择适宜的教学方法与教学手段,突出重点、化解难点,有意识、有目的、有重点地营造 有利于学生能力发展的氛围,启发学生思维,促进学生能力的提高。并通过教研活动统一教学 行为。 六、实验/实践内容:无 七、考核方式: 考试采用闭卷考试形式。内容包括基本概念,基础理论,分析计算,题型分为填空、选择、 计算或解答题,证明等方式,题目的难易程度要视学生的实际情况而定。 总评成绩:平时学习过程的考核占 30%,理论闭卷考试成绩占 70%,其中平时学习过程包 括平时作业(占总成绩的 20%),考勤(占总成绩的 5%),课堂表现及课后互动(占总成绩的 5%)。 八、教材及主要参考书: 1、选用教材: 《高等数学》(上下册,第六版) 同济大学主编,高等教育出版社,2007 年。 2、主要参考书: [1] 《高等数学》吴赣昌等,《数学物理方程》,中国人民大学出版社,2009 年。 [2] 《高等数学》上下册黄立宏等编,复旦大学出版社,2009 年。 [3]《数学分析》 陈纪修,高等教育出版社,2005 年。 [4]《数学复习指南》,陈文灯等编,世界图书出版社,2010 年。 九、教改说明及其他: 无 执笔人:黄宠辉 系室审核人:廖茂新