习题课
习题课
本章要点 1极限; 2极限的运算法则,两个重要极限; 3无穷小与无穷小的比较; o4连续函数
一、本章要点 1.极限; 2.极限的运算法则,两个重要极限; 3.无穷小与无穷小的比较; 4.连续函数.
1极限 数列的极限lmxn=a分VE>0,3N,当n>N有 x-ax0 f(x)-4<6
1.极限 数列的极限 lim n 0, , 当 有 n x a ε N n N →∞ = ⇔ ∀ > ∃ > . n x a − ∃ 当 有 < <
)limf(x)=AVE0,丑x,当x>X有 x→00 (x)-40,30,当00,3,当0<x-x<有 x→ (x)-A4<E
f x( ) − A ∃ 当 有 > 单侧极限 0 0 lim ( ) 0, , 0 x x f x A ε δ δ x x → − = ⇔ ∀ > ∃ 当 有 ∃ 当 有 < − < f x( ) − A < ε
定理imf(x)=Aimf(x)=lmf(x)=A x→)x limf(x)=A分V0,3X>0,当x0,3X>0,当x>Y有 x→)+00 (x)-4<6 定理 limf(x)=Ae lim f(x)=lim f(x)=A →)+0
定理 ( ) ( ) ( ) 0 0 0 lim lim lim . x x x x x x f x A f x f x A → → → − + = ⇔ = = lim ( ) 0, 0, x f x A ε X x X →−∞ = ⇔ ∀ > ∃ > 当 有 ∃ > 当 有 > f x( ) − A < ε. 定理 lim ( ) lim ( ) lim ( ) . x x x f x A f x f x A →∞ →−∞ →+∞ = ⇔ = =
2极限运算法则,两个重要极限 设limf(x)=Aimg(x)=B,则 )lin[f(x)±g(x)]=lm/(x)±img(x)=A±B m0()g8)=[lm/(x)[mg() A·B. (3)若B≠0, limf(x)A lin lim B
2.极限运算法则, 两个重要极限 设 则 lim ( ) ,lim ( ) , x x f x = A g x = B ⑴ lim ( ) ( ) ( lim ) lim ( ) . x x x ⎡ ⎤ f x ± g x = ± f x g x = A ± B ⎣ ⎦ ⑵ lim ( ) ( ) lim ( ) lim ( ) . x x x ⎡ ⎤ f x ⋅ g x = ⋅ ⎡ ⎤ f x ⎡ g x A ⎤ = ⋅ B ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⑶ 若B ≠ 0, ( ) ( ) ( ) ( ) lim lim . lim x x x f x f x A g x g x B = =
(4)设limf(n)=Aim(x)=b2,且 l→>l0 x≠x→0(x)≠ limfl()=A
x x ≠ ⇒0 0 ϕ ( x) ≠ u ⑷设 ( ) ( ) 且 0 0 lim ,lim , u u x f u A ϕ x u → = = ,则 ( ) 0 lim . x x f ϕ x A → ⎡ ⎤ = ⎣ ⎦
极限存在准则 准则(夹逼定理)设函数f(x),g(x),(x)在x的 某一邻域内满足: )f(x)≤g(x)≤h(x) (2)lim f(x)=limh(x)=A, Di limf(x)=A 准则2单调有界必有极限
极限存在准则 准则1(夹逼定理) 设函数 在 的 某一邻域内满足: ⑴ ⑵ 则 f x( ), , g ( x) h( x) 0 x f x( ) ≤ ≤ g ( x) h( x), lim ( ) lim ( ) , x x f x = h x = A lim ( ) . x f x = A 准则2 单调有界必有极限.
两个重要极限 sInx 极限1im= lim x sin-=1 x→>0x x→00 x 极限21im1+=imn(1+x)1=e X >0
两个重要极限 极限1 0 sin 1 lim lim sin 1. x x x x → → x x ∞ = = 极限2 ( ) 1 0 1 lim 1 lim 1 . x x x x x e →∞ x → ⎛ ⎞ + = + = ⎜ ⎟ ⎝ ⎠
3无穷小与无穷小的比较 无穷小若lima=0.则称a为无穷小 设a,为无穷小,若 e)lim=0.a为/的高阶无穷小,记作a=O(B) B 2)lim=n=c≠0,则称a是B的同阶无穷小; )ma=1则称a是B的等价无穷小,记作~B B
3.无穷小与无穷小的比较 无穷小 若 lim 0,则称 为无穷小. x α = α 设 为无穷小,若 ⑴ 为 的高阶无穷小,记作 α,β lim 0, x α α β β = α = o(β ). ⑵ lim 0, 则称 是 的同阶无穷小; x c α β = ≠ α β ⑶lim x 1, 则称 是 的等价无穷小, 记作 . αβ = α β α ∼ β