定量法习题解答 第一章 2.(1)P{恰有一件次品;CC逆=0.0855 (2)P{全是正品}=194=0.9122 (3)P{至少2件正品}=P{2件正品}+P{3件正品} =P{1件次品}+P{全是正品}=00855+0.9122=09978 4.设A={寿命≥50},B={寿命≥70},由题意, P(A=1-0.1=0.9,P(B=1-0.75=0.25,求P(BA) BcA,∴P(AB)=P(B) P(BA=P(AB)/P(A)=P(B)/P(A)=0.25/0.9=0.278 5.记A={甲导弹命中},B={乙导弹命中},则A、B独立, PIAUB=P(A)P(B)-P(AB) P(AHP(B)-P(A)P(B =0.6+0.7-0.6×0.7=0.88 或:P{AUB}=1-P(A∪B)=1-P(AB)=1-P(A)P(B) 1-(1-0.6(1-0.7)==0.88 6.设A1={抽到用甲厂原料生产的产品},A2={抽到用乙厂原料生产的产品}, A3={抽到用丙厂原料生产的产品},B={抽到次品},则 P(A1)=06,P(A2)=0.3,P(A3)=0.1 P(B|A1)=0.02,P(BA2)=0.03,P(B|A3)=005 (1)P(A3B=P(A3)P(B|A3)=0.1×0.05=0.005 (2)P(B)=P(A)P(BA1)+P(A2)P(BA2)+P(A3)P(B3) =06×0.02+0.3×0.03+0.1×0.05=0.026 (3)P(A|B尸=P(A1)P(BA1)/P(B=0.6×0.02/0.026=0.4615 7.设至少应配备n门高炮,并设X为击中敌机的高炮数,则X~B(n,0.02),由题 意,使 P(X≥1)=1-P(X=0)=1-C00020.98″=1-0.98≥0.3 得0.98≤07,nlg0.98≤l90.7,n≥ lg0.7 =1765 lg0.98 故至少应配备18门高炮。 8.设X={一合中的次品数},则Ⅹ~B(n,p),n=100,p=001,q=0.99 (1)P{X=0}=C0×0010×0.9910=0.366 (2)P{X>2}=1P{X=0}-P{X=1}-P{X=2} 1-0.366-Clo×001×0.99C10×0012×0.998=00794
定量法习题解答 第一章: 2.(1) P{恰有一件次品}= 3 200 2 194 1 6 C C C =0.0855 (2) P{全是正品}= 3 200 3 194 C C =0.9122 (3) P{至少 2 件正品}= P{2 件正品}+ P{3 件正品} = P{1 件次品}+ P{全是正品}=0.0855+0.9122=0.9978 4.设A={寿命50}, B={寿命70},由题意, P(A)=1-0.1=0.9,P(B)=1-0.75=0.25,求P(B|A)。 BA,∴P(AB)=P(B) P(B|A)=P(AB) / P(A)=P(B) / P(A) =0.25 / 0.9=0.278 5.记 A={甲导弹命中},B={乙导弹命中},则 A、B 独立, P{A∪B}=P(A)+P(B)-P(AB) = P(A)+P(B)-P(A)P(B) =0.6+0.7-0.6×0.7=0.88 或:P{A∪B}=1- P(A B) = 1− P(AB) = 1− P(A)P(B) =1-(1-0.6)(1-0.7)==0.88 6.设 A1={抽到用甲厂原料生产的产品},A2={抽到用乙厂原料生产的产品}, A3={抽到用丙厂原料生产的产品},B={抽到次品},则 P(A1)=0.6,P(A2)=0.3,P(A3)=0.1 P(B|A1)=0.02,P(B|A2)=0.03,P(B|A3)=0.05 (1) P(A3B)=P(A3)P(B|A3)=0.1×0.05=0.005 (2) P(B)=P(A1)P(B|A1)+ P(A2)P(B|A2)+ P(A3)P(B|A3) =0.6×0.02+0.3×0.03+0.1×0.05=0.026 (3) P(A1|B)=P(A1)P(B|A1) / P(B)=0.6×0.02 / 0.026=0.4615 7.设至少应配备n门高炮,并设X为击中敌机的高炮数,则X~B(n, 0.02),由题 意,使 P(X≥1)=1-P(X=0)=1- 0.02 0.98 1 0.98 0.3 0 0 = − n n Cn 得 0.98n≤0.7,n lg0.98≤lg0.7, 17.65 lg 0.98 lg 0.7 n = 故至少应配备 18 门高炮。 8.设 X={一合中的次品数},则 X~B(n,p),n=100,p=0.01,q=0.99 (1) P{X=0}= 0 C100 ×0.010×0.99100=0.366 (2) P{X>2}=1-P{X=0}-P{X=1}-P{X=2} =1-0.366- 1 C100 ×0.01×0.9999 - 2 C100 ×0.012×0.9998=0.0794
(3)设每合至少装n个钻头,则λ=np=001×n≈1 由题意,每合废品数Ⅹ≤n100 P{X≤n-100}=1-P{X>n-100}=1-P{X≥n99} 2 e ≥0.98 =月-99K! 即:∑ <0.02,查泊松分布表(λ=1),得 K -99mn=4,即:n99=4,n=103,即每合至少装103个 P{X≤3}=P{X=0}+P{X=1}+P{X=2}+P{X=3} C03×0.010×0.990Ct3×001×0.9902 +C23×0.012×0990+C3×0.013×0.9900 0.9798 10.(1)X~N(u,0.012), P(B02<x<+02}=0(+02-)-a=002-g 0.01 0.01 =中(2}中(2)2中(2)-1=0.9544 (2)X~N(p,0.0072) P0.02X<u+002=4(4+002)-a4-002-41 0.007 =2中(2857)1=2×0.9979-1=0.9958 故σ反映了机床的加工精度 1.0P/X1501-0(530-100 500)=1-中(1)=1-0.8413=0.1587 (2)800+700=1500 ∵{X≥1500}c{X≥800},∴P{X≥1500,X≥800}=P{X≥1500} 由题意,即要求P{X≥1500X≥800},由条件概率的计算公式, P(X≥1500X≥800=DX2150X280=PX21500 P{X≥800} P{X≥800} 其中:P{X≥800=800-1000 故P{X≥150≥80)=V50)=1-d(044(04)=06554 (3)解法一:设X1、X2、X3分别为3个元件的寿命,则X1、X2、X3相互独立 P{至少有一个损坏}=1-P{全不损坏 =1-P{X1≥1000,X2≥1000,X3≥1000} =1-P{X1≥1000}P{X2≥1000}P{X3≥1000} 1-(P{X≥100033=1-(1-中(0)=140.53=0.875 解法二:设Y为1000小时内损坏的元件数,由于各元件独立工作,故Y服 从二项分布,n=3,p=P{X<1000}=中(0)=0.5, P{Y≥1}=1P{Y=0}=1C3×0.50×0.5=0.875
(3) 设每合至少装 n 个钻头,则λ=np=0.01×n≈1 由题意,每合废品数 X≤n-100 P{X≤n-100}=1-P{X>n-100}=1-P{X≥n-99} =1- 0.98 99 ! = − − K n k K e 即: 0.02 99 ! = − − K n k K e ,查泊松分布表(λ=1),得 (n-99)min=4,即:n-99=4, n=103,即每合至少装 103 个。 P{X≤3}=P{X=0}+P{X=1}+P{X=2}+P{X=3} = 0 C103 ×0.010×0.99103+ 1 C103 ×0.011×0.99102 + 2 C103 ×0.012×0.99101+ 3 C103 ×0.013×0.99100 =0.9798 10.(1)X~N(μ,0.012 ), P{μ-0.021500}=1- ) 500 1500 1000 ( − =1-φ(1)=1-0.8413=0.1587 (2) 800+700=1500, ∵{X≥1500}{X≥800},∴P{X≥1500,X≥800}=P{X≥1500} 由题意,即要求 P{X≥1500|X≥800},由条件概率的计算公式, P{X≥1500|X≥800}= { 800} { 1500} { 800} { 1500, 800} = P X p X P X p X X 其中:P{X≥800}=1- ) 500 800 1000 ( − =1-φ(-0.4)=φ(0.4)=0.6554 故 P{X≥1500|X≥800}=0.1587/0.6554=0.2421 (3)解法一:设 X1、X2、X3 分别为 3 个元件的寿命,则 X1、X2、X3 相互独立, P{至少有一个损坏}=1-P{全不损坏} =1-P{X1≥1000,X2≥1000,X3≥1000} =1-P{X1≥1000}P{X2≥1000}P{X3≥1000} =1-(P{X≥1000})3=1-(1-φ(0))3=1-0.53=0.875 解法二:设 Y 为 1000 小时内损坏的元件数,由于各元件独立工作,故 Y 服 从二项分布,n=3,p=P{X<1000}=φ(0)=0.5, P{Y≥1}=1-P{Y=0}=1-C3 0×0.50×0.53=0.875
12.EY)=E(x=(x)=(X)-2x=0 D(X) D() D(YFD -E() D(X) D(X)(D(X)2
12 . E (Y)= ( ) ( ) ( ) ) ( ) ( ) ( D X E X E X D X X E X E − = − =0 D(Y)= 2 ( ( ) ) ( ) ) ( ) ( ) ( D X D X D X X E X D = − =1