当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

复旦大学:《数字信号处理》课程教学资源(课件讲稿)第四章 Z变换(定义、收敛域、基本性质、Z反变换、几种变换的对应关系、系统函数与频率特性)

资源类别:文库,文档格式:PDF,文档页数:111,文件大小:1.5MB,团购合买
 Z变换的正变换和逆变换定义,以及收敛域与序列特性之间的关系。  Z变换的定理和性质: 移位、 反转、 z域微分、 共轭序列的Z变换、 时域卷积定理、 初值定理、 终值定理、帕斯瓦尔定理。  系统的传输函数和系统函数的求解。  用极点分布判断系统的因果性和稳定性。  零状态响应、 零输入响应和稳态响应的求解。  用零极点分布定性分析并画出系统的幅频特性。  4.1 Z变换定义  4.2 Z变换收敛域  4.3 Z变换的基本性质  4.4 Z反变换  4.5 几种变换的对应关系  4.5 系统函数与频率特性
点击下载完整版文档(PDF)

2013年秋季学期 3教105 数字信号处理 第四章Z变换 身復g大 FUDAN UNIVERSITY

数字信号处理 第四章 Z变换 2013年秋季学期 3教105

第四章Z变换 41乙变换定义 4.2乙变换收敛域 4.3Z变换的基本性质 44z反变换 45几种变换的对应关系 4.5系统函数与频率特性

第四章 Z变换  4.1 Z变换定义  4.2 Z变换收敛域  4.3 Z变换的基本性质  4.4 Z反变换  4.5 几种变换的对应关系  4.5 系统函数与频率特性 2

本章主要学习 ◆Z变换的正变换和逆变换定义,以及收敛域与序列特性之 间的关系 ◆Z变换的定理和性质:移位、反转、z域微分、共轭序 列的Z变换、时域卷积定理、初值定理、终值定理、 帕斯瓦尔定理。 ◆系统的传输函数和系统函数的求解 ◆用极点分布判断系统的因果性和稳定性 ◆零状态响应、零输入响应和稳态响应的求解 ◆用零极点分布定性分析并画出系统的幅频特性

 Z变换的正变换和逆变换定义,以及收敛域与序列特性之 间的关系。  Z变换的定理和性质: 移位、 反转、 z域微分、 共轭序 列的Z变换、 时域卷积定理、 初值定理、 终值定理、 帕斯瓦尔定理。  系统的传输函数和系统函数的求解。  用极点分布判断系统的因果性和稳定性。  零状态响应、 零输入响应和稳态响应的求解。  用零极点分布定性分析并画出系统的幅频特性。 本章主要学习 3

第四章Z变换 4.1Z变换定义 4.2乙变换收敛域 4.3Z变换的基本性质 4.4Z反变换 4.5几种变换的对应关系 4.5系统函数与频率特性

第四章 Z变换  4.1 Z变换定义  4.2 Z变换收敛域  4.3 Z变换的基本性质  4.4 Z反变换  4.5 几种变换的对应关系  4.5 系统函数与频率特性 4

4.1Z变换定义 z变换是离散时间傅立叶变换的推广形式 对于很多序列,其离散时间傅立叶变换不存在,但其z变换存在 对于实值序列,其z变换是复数变量z的实有理函数 ●z变换是数字滤波器设计和分析的重要工具 ●在z域中,LT|离散时间系统的表示由其传输函数给出

4.1 Z变换定义  z变换是离散时间傅立叶变换的推广形式  对于很多序列,其离散时间傅立叶变换不存在,但其z变换存在  对于实值序列,其z变换是复数变量z的实有理函数  z变换是数字滤波器设计和分析的重要工具  在z域中,LTI离散时间系统的表示由其传输函数给出 5

4.1Z变换定义 序列的傅立叶变换口→频域分析; 推广:序列的Z变换 复频域分析 Z变换的定义z=e”7=e+mr=eelr= re/o 双边Z变换X(z)=∑x(n)z z是连续的复变量,它所在的复平面称为z平面。 单边Z变换X(z)=∑x(n)zn n=0 也可将x(m的Z变换表示为Z[x(m)]=(z)

Z变换的定义 序列的傅立叶变换 频域分析; 推广:序列的Z变换 复频域分析       n n X(z) x(n)z z是连续的复变量,它所在的复平面称为z平面。 双边Z变换 单边Z变换      n 0 n X(z) x(n)z s T σ jω T σT jωT jω z  e  e  e e  re (  ) 4.1 Z变换定义 也可将x(n)的Z变换表示为 Z[x(n)]=X(z) 6

对于任意给定的序列,使Z变换收敛的z值集合称作收敛 区域。级数收敛的充分必要条件是满足绝对可和条件即: ∑ xnz“< =- 般来说,Z变换将在z平面上的一个环形区域中收敛, 收敛域为 R<z<R x十 式中,R和R称为收敛半径。R和R的大小和序列有密切 的关系

对于任意给定的序列,使Z变换收敛的z值集合称作收敛 区域。级数收敛的充分必要条件是满足绝对可和条件即: 一般来说,Z变换将在z平面上的一个环形区域中收敛, 收敛域为 式中,Rx-和Rx+称为收敛半径。Rx-和Rx+的大小和序列有密切 的关系。        n n | x(n)z | Rx   Rx z 7

例求序列x(m)=a"u(n)和x2(n)=-"以(-n-1)的Z变换 解: X1(z) ∑ a Z= z>a 2(2)=>,aZ”= z< la 1-az 结论 收敛域不同对应于不同的序列。当给出Z变换函数表达 式的同时,必须说明它的收敛域后,才能单值的确定它所对 应的序列

例 求序列 和 的Z变换。 解: x (n) a u(n) n 1  ( ) ( 1) x2 n  a u n n 1 0 1 1 z 1 (z) z         a X a n n n 1 1 2 1 z 1 (z) z          a X a n n n z  a z  a 收敛域不同对应于不同的序列。当给出Z变换函数表达 式的同时,必须说明它的收敛域后,才能单值的确定它所对 应的序列。 结论 8

第四章Z变换 4.1Z变换定义 4.2乙变换收敛域 4.3Z变换的基本性质 4.4Z反变换 4.5几种变换的对应关系 4.5系统函数与频率特性

第四章 Z变换  4.1 Z变换定义  4.2 Z变换收敛域  4.3 Z变换的基本性质  4.4 Z反变换  4.5 几种变换的对应关系  4.5 系统函数与频率特性 9

42Z变换收敛域 常用的Z变换是一个有理函数,用两个多项式之比表示 X(二) Q(=) 分子多项式P(z)的根是X(z)的零点,分母多项式Q(z)的根是X(z)的 极点。在极点处Z变换不存在,因此收敛域中没有极点,收敛域总是 用极点限定其边界。 对比序列的傅里叶变换定义,很容易得到DTFT和之间的关系, 用下式表示:X(e)=X(z) 2=已 式中z=610表示在z平面上r=1的圆,该圆称为单位圆。上式表明 单位圆上的Z变换就是序列的傅里叶变换。如果已知序列的Z变换,可用 上式,很方便的求出序列的FT,条件是收敛域中包含单位圆

4.2 Z变换收敛域 常用的Z变换是一个有理函数, 用两个多项式之比表示 分子多项式P(z)的根是X(z)的零点, 分母多项式Q(z)的根是X(z)的 极点。 在极点处Z变换不存在, 因此收敛域中没有极点, 收敛域总是 用极点限定其边界。 对比序列的傅里叶变换定义,很容易得到DTFT和ZT之间的关系, 用下式表示: 式中z=e jω表示在z平面上r=1的圆, 该圆称为单位圆。上式表明 单位圆上的Z变换就是序列的傅里叶变换。如果已知序列的Z变换,可用 上式, 很方便的求出序列的FT, 条件是收敛域中包含单位圆。 ( ) ( ) ( ) P z X z Q z  ( ) ( ) j j z e X e X z     10

点击下载完整版文档(PDF)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
共111页,可试读30页,点击继续阅读 ↓↓
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有