相关文档

基于遗传算法优化的支持向量机品位插值模型

将支持向量机(SVM)和遗传算法(GA)集成应用到矿体品位插值问题中,利用遗传算法全局搜索的优势对支持向量机的三个关键参数——惩罚系数C、不敏感系数ε和核函数参数σ进行寻优,克服单纯支持向量机法中依靠经验确定参数的局限性.将优化参数代入到支持向量机中进行迭代训练,得到基于遗传算法参数优化的支持向量机(GA-SVM)矿体品位插值模型.以国内典型矿山的实际勘探数据为例,通过该品位插值模型计算结果与传统插值方法计算结果和矿山生产实际数据的对比分析,验证了其可行性和有效性.
团购合买资源类别:文库,文档格式:PDF,文档页数:7,文件大小:623.08KB
点击进入文档下载页(PDF格式)
已到末页,全文结束
点击下载(PDF格式)

浏览记录