INFLUENCE LINES IN CONTINUOUS BEAMS Number of Spans (<=10: Span Stiffness No. of Sections in Span(<=30): 日 1000100010001000 Analysis Options o Internal Forces Section Location O Support Reactions Span No Dist from beginning of spal shear force Deflections Continuous Beam Influence lines 1546E-15 1046E-15 546E-16 4.601E-17 4.54E-16 -9.54E-16 145E-15 195E-15 RESULTS Maximum Value: 1.8E-15 0 1167 X-Global Span X-Local Moment Shear Deflect. Minimum Value: -2E 0 o Positive Area: 5.3E-15 4.1137 o Negative Area: -9E 12 00.006022 Total Area: -4E-15-1723 28406284 00.010539 o0011762 00.012045 00011198 48 00009033 00.005364 0 0-0.01122 78 0-0.0248 114 87354628 o-0.03903 0-005194 o-0.06175 000000000000000000 0-00662 0-0.06472 0-0.054 0|-003324
INFLUENCE LINES IN CONTINUOUS BEAMS Span No. 1 2 3 4 Number of Spans ( <=10 ): 4 Span Length: 60 90 50 40 No. of Sections in Span (<=30): 10 Stiffness EI 1000 1000 1000 1000 0 60 150 200 240 0 0 0 0 Section Location Span No. 4 Dist. from beginning of span 40 1 Moment Shear RESULTS Maximum Value: 1.8E-15 0.1167 X-Global Span X-Local Moment Shear Deflect. Minimum Value: -2E-15 -1 0 1 0 0 0 0 Positive Area: 5.3E-15 4.1137 6 6 0 0.003105 0 Negative Area: -9E-15 -21.34 12 12 0 0.006022 0 Total Area: -4E-15 -17.23 18 18 0 0.008563 0 24 24 0 0.010539 0 30 30 0 0.011762 0 36 36 0 0.012045 0 42 42 0 0.011198 0 48 48 0 0.009033 0 54 54 0 0.005364 0 60 60 0 0 0 60 2 0 0 0 0 69 9 0 -0.01122 0 78 18 0 -0.02484 0 87 27 0 -0.03903 0 96 36 0 -0.05194 0 105 45 0 -0.06175 0 114 54 0 -0.06662 0 123 63 0 -0.06472 0 132 72 0 -0.0542 0 141 81 0 -0.03324 0 Bending Moment Shear Force Deflections Internal Forces Support Reactions Analysis Options
150 155 00.023956 0.049628 00.074377 170 00.095562 175 00.110544 00.116682 00.11137 190 50505050 00.091868 0 0|-005979 208 212 220 260 0-021606 -0.30971 0-041183 0000000000000000000000 224 -0.521 28|178E-15063581 32-18E-15-0.75486 36|-89E-16-087672
150 90 0 0 0 150 3 0 0 0 0 155 5 0 0.023956 0 160 10 0 0.049628 0 165 15 0 0.074377 0 170 20 0 0.095562 0 175 25 0 0.110544 0 180 30 0 0.116682 0 185 35 0 0.111337 0 190 40 0 0.091868 0 195 45 0 0.055636 0 200 50 0 0 0 200 4 0 0 0 0 204 4 0 -0.05979 0 208 8 0 -0.13228 0 212 12 0 -0.21606 0 216 16 0 -0.30971 0 220 20 0 -0.41183 0 224 24 0 -0.521 0 228 28 1.78E-15 -0.63581 0 232 32 -1.8E-15 -0.75486 0 236 36 -8.9E-16 -0.87672 0 240 40 0 -1 0
lefl lec 000
240 240 240 240 240 240 0 0 0 0 0 0 Deflect.0 0 0 0 0
Bending Moment Analysis optio Stiffness matrix Deflections Reactions 0.050.0 2573 0.0150.0466670.008333 0.03 Load Vector [Ap] Point load in span Moment in simple beam under Point load Distance from the beginning of span Simple= X(L-X/(6LED [△p] 0 0 030000 #N/A #N/A fNA 70000 NA #N/A 0 0 0 0 0 0 0 可00 Section in span of ple span moments in statically determined structure 2 4 RE Defined Ranges D_‖L= OFFSET(X Globa,5) delta =OFFSET(p1x10, 0,0, 1, Nspans-1) DiagramLink =Input: SI$13
Bending Moment Analysis Option 1 Shear Force Stiffness Matrix [d ] Deflections Reactions 1 2 3 1 0.05 0.015 0 2 0.015 0.046667 0.008333 3 0 0.008333 0.03 Load Vector [Dp] Point load in span 4 Moment in simple beam under Point load: Distance from the beginning of span: 40 Msimple= 0 -X(L-X)/(6LEI): 0 [Dp] 0 0 0 1 2 3 4 5 6 7 8 9 10 0 0 0 #N/A #N/A #N/A #N/A #N/A #N/A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 Section in span 4 Distance from the beginning of span: 40 Mp 1 2 3 0 0 0 0 M = 0 Vp 1 2 3 -1 0 0 0 V = -1 Simple span moments in statically determined structure 1 2 3 4 0 0 0 0 R = Defined Ranges D_IL =OFFSET(X_Global,,5) deltaP =OFFSET(p1x10,0,0,1,Nspans-1) DiagramLink =Input!$I$13
El =InputISGS5: $P$5 nfuenceLine= CHOOSE( DiagramLink,MLV‖LD‖L L =Input SGS4: $P$4 LoadSpan =SolverISE$17 LoadX =SolverISES18 M IL =OFFSET( Global,, 3) 110x10 =Solver! S6: SJ$14 mamⅸ= OFFSET(m10×10.0.0 Spans1, Spans-1) Moment =SolverISB$30 Msimple =SolMerISH$18 Msup =Solver/SB $22: SJ$22 Sections =Input! sDS p1x10=Solver!SB$21: $J$21 SectionSpan =SolverISES24 SectionX =SolverISES25 Shear =Solver!SBS35 V IL =OFFSET Global, 4 X=SolverISE$18 X Global =OFFSET Global Big, COUNT(X Global Big) X Global Big =Input SAS18: SAS848 XGLOBAL =Input A$18: SAS61 Ⅺoc1= nput!sC$17
EI =Input!$G$5:$P$5 InfluenceLine =CHOOSE(DiagramLink,M_IL,V_IL,D_IL) L =Input!$G$4:$P$4 LoadSpan =Solver!$E$17 LoadX =Solver!$E$18 M_IL =OFFSET(X_Global,,3) m10x10 =Solver!$B$6:$J$14 matrix =OFFSET(m10x10,0,0,Nspans-1,Nspans-1) Moment =Solver!$B$30 Msimple =Solver!$H$18 Msup =Solver!$B$22:$J$22 Nsections =Input!$D$5 Nspans =Input!$D$4 p1x10 =Solver!$B$21:$J$21 SectionSpan =Solver!$E$24 SectionX =Solver!$E$25 Shear =Solver!$B$35 V_IL =OFFSET(X_Global,,4) X =Solver!$E$18 X_Global =OFFSET(X_Global_Big,,,COUNT(X_Global_Big)) X_Global_Big =Input!$A$18:$A$848 XGLOBAL =Input!$A$18:$A$61 XLoc1 =Input!$C$17
34567890 Sup/Lj-1 0000 Reaction Msup/L Reaction in statically determined structure Reaction Total
Piers 1 2 3 4 5 6 7 8 9 10 11 11 Piers Msup 0 Msup/Li-1 0 Msup/Li 0 Reaction Msup/L 0 Reaction in statically determined structure 0 Reaction Total