第三章简单的优化模到 3.1存贮模型 3.2生猪的出售时机 3.3森林救火 34最优价格 3.5血管分支 3.6消费者均衡 3.7冰山运输
第三章 简单的优化模型 3.1 存贮模型 3.2 生猪的出售时机 3.3 森林救火 3.4 最优价格 3.5 血管分支 3.6 消费者均衡 3.7 冰山运输
静恋优化模型 现实世界中普遍存在着优化问题 静态优化问题指最优解是数(不是函数) 建立静态优化模型的关键之一是根 据建模目的确定恰当的目标函数 °求解静态优化模型一般用微分法
• 现实世界中普遍存在着优化问题 • 静态优化问题指最优解是数(不是函数) • 建立静态优化模型的关键之一是根 据建模目的确定恰当的目标函数 • 求解静态优化模型一般用微分法 静 态 优 化 模 型
3.1存贮模型 问题 配件厂为装配线生产若干种产品,轮换产品时因更换设 备要付生产准备费,产量大于需求时要付贮存费。该厂 生产能力非常大,即所需数量可在很短时间内产出。 已知某产品日需求量100件,生产准备费5000元,贮存费 每日每件1元。试安排该产品的生产计划,即多少天生产 一次(生产周期),每次产量多少,使总费用最小。 要不只是回答问题,而且要建立生产周期、产量与 求需求量、准备费、贮存费之间的关系
3.1 存贮模型 问 题 配件厂为装配线生产若干种产品,轮换产品时因更换设 备要付生产准备费,产量大于需求时要付贮存费。该厂 生产能力非常大,即所需数量可在很短时间内产出。 已知某产品日需求量100件,生产准备费5000元,贮存费 每日每件1元。试安排该产品的生产计划,即多少天生产 一次(生产周期),每次产量多少,使总费用最小。 要 求 不只是回答问题,而且要建立生产周期、产量与 需求量、准备费、贮存费之间的关系
问题分析与思考 日需求100件,准备费5000元,贮存费每日每件1元。 每天生产一次,每次100件,无贮存费,准备费5000元。 每天费用5000元 10天生产一次,每次1000件,贮存费900+800+.+100=4500 元,准备费5000元,总计9500元。 平均每天费用950元 50天生产一次,每次5000件,贮存费4900+4800+.+100 122500元,准备费5000元,总计127500元。 平均每天费用2550元 10天生产一次平均每天费用最小吗?
问题分析与思考 • 每天生产一次,每次100件,无贮存费,准备费5000元。 日需求100件,准备费5000元,贮存费每日每件1元。 • 10天生产一次,每次1000件,贮存费900+800+…+100 =4500 元,准备费5000元,总计9500元。 • 50天生产一次,每次5000件,贮存费4900+4800+…+100 =122500元,准备费5000元,总计127500元。 平均每天费用950元 平均每天费用2550元 10天生产一次平均每天费用最小吗? 每天费用5000元
问题分析与思考 周期短,产量小 贮存费少,准备费多 周期长,产量大 准备费少,贮存费多 存在最佳的周期和产量,使总费用(二者之和)最小 这是一个优化问题,关键在建立目标函数 显然不能用一个周期的总费用作为目标函数 目标函数每天总费用的平均值
• 这是一个优化问题,关键在建立目标函数。 显然不能用一个周期的总费用作为目标函数 目标函数——每天总费用的平均值 • 周期短,产量小 • 周期长,产量大 问题分析与思考 贮存费少,准备费多 准备费少,贮存费多 存在最佳的周期和产量,使总费用(二者之和)最小
模型假设 1.产品每天的需求量为常数r; 2每次生产准备费为c1,每天每件产品贮存费为c2; 3.T天生产一次(周期),每次生产Q件,当贮存量 为零时,Q件产品立即到来(生产时间不计) 4.为方便起见,时间和产量都作为连续量处理。 建模目的 设rc1,c2已知,求TQ使每天总费用的平均值最小
模 型 假 设 1. 产品每天的需求量为常数 r; 2. 每次生产准备费为 c1 , 每天每件产品贮存费为 c2; 3. T天生产一次(周期), 每次生产Q件,当贮存量 为零时,Q件产品立即到来(生产时间不计); 建 模 目 的 设 r, c1 , c2 已知,求T, Q 使每天总费用的平均值最小。 4. 为方便起见,时间和产量都作为连续量处理
模型建立 离散问题连续化 贮存量表示为时间的函数q() =0生产Q件,q(0)=Q,q(0)以 需求速率递减,q(T)=0 A=0T/2 d O=rT 周期贮存费为一周期 cgO)bh=c,4总费用 +C2T=c1+ 每天总费用平均 corT 值(目标函数) C(T)== TT x
模 型 建 立 0 t q 贮存量表示为时间的函数 q(t) T Q r t=0生产Q件,q(0)=Q, q(t)以 需求速率r递减,q(T)=0. 一周期 总费用 T Q C c c 2 ~ = 1 + 2 每天总费用平均 值(目标函数) 2 ~ ( ) 1 2 c rT T c T C C T = = + 离散问题连续化 c q t dt c A T 2 0 2 ( ) = 一周期贮存费为 A=QT/2 2 2 1 2 rT = c + c Q = rT
模型求解 corT 求T使C(T)=+-2->Mi T 2 dc 0 cr T T T 2 模型分析 →7,Q 个→T,0r个→7.Q个 模型应用 C1=5000c2=1,r=100 回答问题T=100,Q=1000件4,C=1000元0
模型求解 Min 2 ( ) = 1 + 2 → c rT T c 求 T 使 C T = 0 dT dC 2 2 1 c c r Q = rT = 2 2 1 rc c T = 模型分析 c1 T,Q c2 T,Q r T ,Q 模型应用 c1=5000, c2=1,r=100 • 回答问题 T=10(天), Q=1000(件), C=1000(元)
经济批量订货公式(EOQ公式) 用于订货、供应、存贮情形 每天需求量r,每次订货费c,每天每件贮存费c2 T天订货一次(周期),每次订货Q件,当贮存量降到 零时,Q件立即到货。 cr T O=rT= C 不允许缺货的存贮模型 °问:为什么不考虑生产费用?在什么条件下才不考虑?
• 经济批量订货公式(EOQ公式) 2 2 1 rc c T = 2 2 1 c c r Q = rT = 每天需求量 r,每次订货费 c1 ,每天每件贮存费 c2 , 用于订货、供应、存贮情形 不允许缺货的存贮模型 • 问:为什么不考虑生产费用?在什么条件下才不考虑? T天订货一次(周期), 每次订货Q件,当贮存量降到 零时,Q件立即到货
允许缺货的存贮模型 当贮存量降到零时仍有需求 出现缺货,造成损失 O+rT 原模型假设:贮存量降到零时Q件 立即生产出来或立即到货) BT 现假设:允许缺货,每天每件缺货损失费c3,缺货需补足 周期T,仁T1贮存量降到零 周期 贮存费 q(tdt=C, A 周期总费用 C=c+c21+ r(T-7 周期c 缺货费3J7 qtdt=c B
允许缺货的存贮模型 A 0 B q Q r T1 t 当贮存量降到零时仍有需求r, 出现缺货,造成损失 原模型假设:贮存量降到零时Q件 立即生产出来(或立即到货) 现假设:允许缺货, 每天每件缺货损失费 c3 , 缺货需补足 T 1 Q = rT c q t dt c A T 2 0 2 1 ( ) = 一周期 贮存费 c q t dt c B T 3 T 3 1 一周期 ( ) = 缺货费 周期T, t=T1贮存量降到零 2 ( ) 2 2 1 3 1 1 2 r T T c QT C c c − = + + 一周期总费用