南京农业大学学报2016,39(3):366-372 http://nauxb.njau.edu.cn Journal of Nanjing Agricultural University D0L:10.7685/jmau.201510023 崔红米,曹学伟,王建军,等.外源GR24对不结球白菜腋芽生长的影响[J].南京农业大学学报,2016,39(3):366-372 外源GR24对不结球白菜腋芽生长的影响 崔红米,曹学伟,王建军,熊爱生,侯喜林,李英 (南京农业大学作物遗传与种质创新国家重点实验室,江苏南京210095) 摘要:[目的]本文旨在探究独脚金内酯对不结球白菜腋芽生长的影响。[方法]采用不同浓度的独脚金内酯人工类似物 GR24处理不结球白菜‘如皋毛菜',调查腋芽表型的变化,采用超高效液相色谱(UPLC)法测定叶腋处细胞分裂素(Z+ZR) 和生长素(IAA)的含量,用荧光定量PCR检测叶腋处分蘖/分枝相关基因的表达。[结果]外源GR24能抑制不结球白菜腋 芽的萌发,且浓度越高抑制作用越明显,同时还能抑制腋芽的伸长,但低浓度GR24的抑制作用更明显。外源GR24处理 后,不结球白菜叶腋处的Z+ZR和IAA含量显著降低,且低浓度的GR24发挥作用快。外源GR24能促进叶腋处独脚金内 酯响应基因MAK2和BRC1的表达,且MAX2的表达量变化比BRC1的变化早:外源GR24能抑制细胞分裂素合成相关基因 LOG1的表达:外源GR24处理后,抑制腋生分生组织形成与生长的基因SPS和抑制新叶形成的基因SPL9的表达量都明显 升高。[结论]外源G24能直接抑制不结球白菜腋芽的萌发和伸长,也能通过调控其他激素相关信号和分蘗/分枝相关基 因的表达来间接抑制不结球白菜腋芽的萌发和伸长。 关键词:不结球白菜:独脚金内酯:腋芽:基因表达 中图分类号:S634.3 文献标志码:A 文章编号:1000-2030(2016)03-0366-07 Effects of exogenous GR24 on the growth of axillary bud of non -heading Chinese cabbage CUI Hongmi,CAO Xuewei,WANG Jianjun,XIONG Aisheng,HOU Xilin,LI Ying" (State Key Laboratory of Crop Genetics and Germplasm Enhancement,Nanjing Agricultural University,Nanjing 210095,China) Abstract [Objectives]The effects of strigolactones on axillary bud growth was researched in non-heading Chinese cabbage [Methods]GR24(artificial analogue of strigolactones)at different concentrations were applied to the roots of non-heading Chinese cabbage 'Rugaomaocai'.The number and total length of active buds were measured;the contents of cytokinins(Z+ZR)and auxin (IAA)in non-heading Chinese cabbage leaf axil were determined using UPLC(ultra performance liquid chromatography),and the relative expression of tillering/branching related genes in non-heading Chinese cabbage leaf axil was tested by RT-PCR.[Results] As a result,exogenous GR24 inhibited axillary bud of non-heading Chinese cabbage releasing from dormancy and the effect of higher concentration of GR24 was stronger.While lower concentration of GR24 could inhibit axillary bud elongation more than higher concentration.After GR24 application,the contents of Z+ZR and IAA were lower than control.While lower concentration of GR24 effected faster.Compared to the control,the relative expression of strigolactones perception gene MAY2 and BRCI increased after GR24 appliction.In addition,the relative expression of MAY2 changed earlier than BRCI.After GR24 application,the relative expression of cytokinins related gene LOG/was lower than control.The relative expression of SPS(regulating the formation and growth of axillary meristem negatively)and SPL9(inhibiting the formation of new leaf)increased after GR24 application. [Conclusions]Exogenous GR24 can inhibit axillary bud releasing from dormancy and axillary bud elongation of non-heading Chinese cabbage directly.At the same time,exogenous GR24 can inhibit axillary bud releasing from dormancy and axillary bud elongation indirectly by regulating the hormones signals and expression of tillerring/branching related genes. Keywords:non-heading Chinese cabbage;strigolactones;axillary bud;gene expression 独脚金内酯(strigolactones.,SLs)是一种产生于植物根部的类胡萝卜衍生物,最早是作为寄生植物种子 萌发刺激物而发现。近期研究发现,该类化合物能够抑制植物的分枝,是继生长素和细胞分裂素之后发现 的调控植物分枝的新型植物激素1-)。GR24为独脚金内酯的人工类似物,现己应用于水稻、豌豆、拟南芥 收稿日期:2015-10-17 基金项目:江苏高校优势学科建设工程项目:国家863计划项目子课题(2012AA100202-8):江苏省科技支撑计划项目(BE2012325):江苏省 杰出青年基金项目(BK20130027) 作者简介:崔红米,硕士研究生.”通信作者:李英,教授,博导,研究方向为蔬菜遗传育种与分子生物学,Tel:025-84395756,Eai让:yingli@ njau.cdu.cn。 ?1994-2016 China Academic Journal Electronic Publishing House.All rights reserved.http://www.cnki.net
南京农业大学学报 2016,39( 3) : 366-372 http: / / nauxb.njau.edu.cn Journal of Nanjing Agricultural University DOI: 10.7685/jnau.201510023 收稿日期: 2015-10-17 基金项目: 江苏高校优势学科建设工程项目; 国家 863 计划项目子课题( 2012AA100202-8) ; 江苏省科技支撑计划项目( BE2012325) ; 江苏省 杰出青年基金项目( BK20130027) 作者简介: 崔红米,硕士研究生。* 通信作者: 李英,教授,博导,研究方向为蔬菜遗传育种与分子生物学,Tel: 025-84395756,E-mail: yingli@ njau.edu.cn。 崔红米,曹学伟,王建军,等. 外源 GR24 对不结球白菜腋芽生长的影响[J]. 南京农业大学学报,2016,39( 3) : 366-372. 外源 GR24 对不结球白菜腋芽生长的影响 崔红米,曹学伟,王建军,熊爱生,侯喜林,李英* ( 南京农业大学作物遗传与种质创新国家重点实验室,江苏 南京 210095) 摘要:[目的]本文旨在探究独脚金内酯对不结球白菜腋芽生长的影响。[方法]采用不同浓度的独脚金内酯人工类似物 GR24 处理不结球白菜‘如皋毛菜’,调查腋芽表型的变化,采用超高效液相色谱( UPLC) 法测定叶腋处细胞分裂素( Z+ZR) 和生长素( IAA) 的含量,用荧光定量 PCR 检测叶腋处分蘖/分枝相关基因的表达。[结果]外源 GR24 能抑制不结球白菜腋 芽的萌发,且浓度越高抑制作用越明显,同时还能抑制腋芽的伸长,但低浓度 GR24 的抑制作用更明显。外源 GR24 处理 后,不结球白菜叶腋处的 Z+ZR 和 IAA 含量显著降低,且低浓度的 GR24 发挥作用快。外源 GR24 能促进叶腋处独脚金内 酯响应基因 MAX2 和 BRC1 的表达,且 MAX2 的表达量变化比 BRC1 的变化早; 外源 GR24 能抑制细胞分裂素合成相关基因 LOG1 的表达; 外源 GR24 处理后,抑制腋生分生组织形成与生长的基因 SPS 和抑制新叶形成的基因 SPL9 的表达量都明显 升高。[结论]外源 GR24 能直接抑制不结球白菜腋芽的萌发和伸长,也能通过调控其他激素相关信号和分蘖/分枝相关基 因的表达来间接抑制不结球白菜腋芽的萌发和伸长。 关键词: 不结球白菜; 独脚金内酯; 腋芽; 基因表达 中图分类号: S634.3 文献标志码: A 文章编号: 1000-2030( 2016) 03-0366-07 Effects of exogenous GR24 on the growth of axillary bud of non - heading Chinese cabbage CUI Hongmi,CAO Xuewei,WANG Jianjun,XIONG Aisheng,HOU Xilin,LI Ying* ( State Key Laboratory of Crop Genetics and Germplasm Enhancement,Nanjing Agricultural University,Nanjing 210095,China) Abstract: [Objectives]The effects of strigolactones on axillary bud growth was researched in non-heading Chinese cabbage. [Methods]GR24( artificial analogue of strigolactones) at different concentrations were applied to the roots of non-heading Chinese cabbage‘Rugaomaocai’. The number and total length of active buds were measured; the contents of cytokinins( Z+ZR) and auxin ( IAA) in non-heading Chinese cabbage leaf axil were determined using UPLC( ultra performance liquid chromatography) ,and the relative expression of tillering / branching related genes in non-heading Chinese cabbage leaf axil was tested by RT-PCR. [Results] As a result,exogenous GR24 inhibited axillary bud of non-heading Chinese cabbage releasing from dormancy and the effect of higher concentration of GR24 was stronger. While lower concentration of GR24 could inhibit axillary bud elongation more than higher concentration. After GR24 application,the contents of Z+ZR and IAA were lower than control. While lower concentration of GR24 effected faster. Compared to the control,the relative expression of strigolactones perception gene MAX2 and BRC1 increased after GR24 appliction. In addition,the relative expression of MAX2 changed earlier than BRC1. After GR24 application,the relative expression of cytokinins related gene LOG1 was lower than control. The relative expression of SPS ( regulating the formation and growth of axillary meristem negatively ) and SPL9 ( inhibiting the formation of new leaf ) increased after GR24 application. [Conclusions]Exogenous GR24 can inhibit axillary bud releasing from dormancy and axillary bud elongation of non-heading Chinese cabbage directly. At the same time,exogenous GR24 can inhibit axillary bud releasing from dormancy and axillary bud elongation indirectly by regulating the hormones signals and expression of tillerring / branching related genes. Keywords: non-heading Chinese cabbage; strigolactones; axillary bud; gene expression 独脚金内酯( strigolactones,SLs) 是一种产生于植物根部的类胡萝卜衍生物,最早是作为寄生植物种子 萌发刺激物而发现。近期研究发现,该类化合物能够抑制植物的分枝,是继生长素和细胞分裂素之后发现 的调控植物分枝的新型植物激素[1-3]。GR24 为独脚金内酯的人工类似物,现已应用于水稻、豌豆、拟南芥
第3期 崔红米,等:外源GR24对不结球白菜腋芽生长的影响 367 和矮牵牛等多分蘖/分枝突变体的研究中[4。研究表明,低浓度的GR24能够使独脚金内酯合成缺失突 变体恢复其野生型的表型,对于独脚金内酯信号途径缺失突变体却没有作用4川。同时,一定浓度的 GR24能够抑制野生型植株分蘖/分枝的生长1-1)。例如,100 nmol.L的GR24严重抑制豌豆SLs合成缺 失突变体ccd8腋芽的生长,对豌豆SLs信号途径缺失突变体ms4的腋芽生长却没有作用[);1molL 的GR24能够完全抑制水稻SLs合成缺失突变体d10和dI7的生长,而对水稻SLs信号途径缺失突变体 d3却没有作用:低浓度的GR24(1molL)不能影响野生型水稻分蘖芽的生长,而高浓度的GR24 (10μmolL)能够明显抑制野生型水稻分蘖芽的生长。 不结球白菜(Brassica campestris ssp..chinensis Makino)是十字花科芸墓属植物,俗称青菜、小白菜、油菜 (北方)[,在中国南方栽培广泛。不结球白菜的大部分品种不分蘖/分枝,但也有少数品种呈分蘖/分枝 状,如如皋毛莱'和南通马耳头'。分蘖/分枝影响不结球白莱的株型,进而影响其产量和品质等重 要农艺性状。研究表明:分蘖/分枝的形成仅受基因型的控制,而分蘖/分枝的生长发育受到基因、环境和 激素的共同调控,这些因素之间相互作用形成复杂的调控网络,共同调控腋芽的生长%。生长素通过顶 端优势的作用间接抑制分蘖/分枝,细胞分裂素和独脚金内酯分别直接促进和抑制分蘖/分枝)。BRC1/ TB1被认为是作为植物激素与环境信号互作的集成器来调控植物分枝发育,它编码TCP家族转录因子, 在腋芽特异表达,其功能缺失突变体会产生更多的分枝[6。MAX2是独脚金内脂响应途径上的基因,位 于BRC1/TB1的下游,外源独脚金内酯类似物不能恢复其突变体的表型[1⑧。水稻中LOG能够编码一种新 的细胞分裂素激活酶,能够催化细胞分裂素合成途径的最后一步9。拟南芥sps突变体分枝数大大增加, 细胞分裂素含量是野生型植株的3~9倍,这说明SPS可能通过控制腋芽形成部位的细胞分裂素含量来抑 制腋芽的生长[2o。SPL9抑制新叶的形成,spl9突变体分蘖/分枝数大大增加2m。 不结球白菜分蘖/分枝的研究目前还处于起步阶段。因此,本研究采用不同浓度的外源GR24处理不 结球白菜如皋毛菜',调查其腋芽生长的动态变化,检测叶腋处细胞分裂素(Z+ZR)、生长素(IAA)含量 和分蘖/分枝相关基因的表达量,以探究外源GR24对不结球白菜分蘖/分枝生长的影响机制,为激素调控 不结球白菜分蘖/分枝生长的机制提供依据。 1材料与方法 1.1材料与外源GR24处理 不结球白菜(Brassica campestris ssp.chinensis Makino)品种如皋毛菜'为南京农业大学白菜课题组保 存材料。试验所用试剂GR24,购于北京大秦兴业科技有限公司。其余试剂均为分析纯。 不结球白菜播种穴盘,待4~5片真叶长出时,选取生长一致的幼苗,移栽到MS营养液中,气泵间断性 通气,每周换1次营养液:11~12片真叶长出时,部分腋芽开始生长,将配好的一定量的GR24母液加入到 MS营养液中(GR24母液先用少量的丙酮溶解后再用蒸馏水定容[),使其终浓度分别为0、1.5和4.5 μmolL1,对照加入与处理等量的丙酮。分别于GR24处理后0、3、6、12、24、36和48h取腋芽(腋芽长度 大于0.2cm)及腋芽周围2mm的植物组织,用于RNA提取(约0.1g)和激素含量的测定(约1.0g), -70℃保存备用。分别于处理后0、3、6、9、12和15d测量‘如皋毛菜'从外到里每个叶片叶腋处腋芽的长 度,并统计活动芽数和活动芽总长度。每个处理3次重复。 1.2激素含量的测定 叶腋处的Z+ZR和IAA含量参照刘旭2)的方法并适当改动。将样品(1.00g左右)放到预冷的研钵 中,加入5mL预冷的50%甲醇溶液(体积分数),冰浴研磨成浆:4℃下浸提12h,10000r·min离心10 min,取上清液保存于4℃冰箱中:残渣加入预冷的50%甲醇溶液3mL重复浸提2次,间隔12h,离心同 上,收集合并全部浸提液;向提取液中加入0.2 g PVPP吸附酚类物质及色素,在摇床上4℃振荡60min, 摇匀,离心同上;将上清液缓慢过C8小柱,流出液倒入50mL小烧杯中进行冷冻干燥;冻干样品用2.5mL 预冷的50%甲醇溶液溶解,过0.22μm的有机系超微滤膜,用于测定激素含量。超高效液相色谱(UPLC) 仪为Agilent1290 nfinity系统,色谱条件为:流动相为0.6%乙酸(体积分数)和色谱级甲醇梯度洗脱(表 1),柱温35℃,进样量2μL,流速0.3mL·min1,检测波长为254nm。 1.3RNA的提取和荧光定量PCR引物的设计 叶腋处RNA的具体提取方法参照植物RNA提取试剂盒说明书(TianGen公司)。按照PrimeScript RT ?1994-2016 China Academic Journal Electronic Publishing House.All rights reserved.http://www.cnki.net
第 3 期 崔红米,等: 外源 GR24 对不结球白菜腋芽生长的影响 和矮牵牛等多分蘖/分枝突变体的研究中[4-6]。研究表明,低浓度的 GR24 能够使独脚金内酯合成缺失突 变体恢复其野生型的表型,对于独脚金内酯信号途径缺失突变体却没有作用[4-11]。同时,一定浓度的 GR24 能够抑制野生型植株分蘖/分枝的生长[11-13]。例如,100 nmol·L-1 的 GR24 严重抑制豌豆 SLs 合成缺 失突变体 ccd8 腋芽的生长,对豌豆 SLs 信号途径缺失突变体 rms4 的腋芽生长却没有作用[7]; 1 μmol·L-1 的 GR24 能够完全抑制水稻 SLs 合成缺失突变体 d10 和 d17 的生长,而对水稻 SLs 信号途径缺失突变体 d3 却没有作用[11]; 低浓度的 GR24( 1 μmol·L-1 ) 不能影响野生型水稻分蘖芽的生长,而高浓度的 GR24 ( 10 μmol·L-1 ) 能够明显抑制野生型水稻分蘖芽的生长[11]。 不结球白菜( Brassica campestris ssp. chinensis Makino) 是十字花科芸薹属植物,俗称青菜、小白菜、油菜 ( 北方) [14],在中国南方栽培广泛。不结球白菜的大部分品种不分蘖/分枝,但也有少数品种呈分蘖/分枝 状,如‘如皋毛菜’和‘南通马耳头’[15]。分蘖/分枝影响不结球白菜的株型,进而影响其产量和品质等重 要农艺性状。研究表明: 分蘖/分枝的形成仅受基因型的控制,而分蘖/分枝的生长发育受到基因、环境和 激素的共同调控,这些因素之间相互作用形成复杂的调控网络,共同调控腋芽的生长[16]。生长素通过顶 端优势的作用间接抑制分蘖/分枝,细胞分裂素和独脚金内酯分别直接促进和抑制分蘖/分枝[17]。BRC1 / TB1 被认为是作为植物激素与环境信号互作的集成器来调控植物分枝发育,它编码 TCP 家族转录因子, 在腋芽特异表达,其功能缺失突变体会产生更多的分枝[16]。MAX2 是独脚金内脂响应途径上的基因,位 于 BRC1 /TB1 的下游,外源独脚金内酯类似物不能恢复其突变体的表型[18]。水稻中 LOG 能够编码一种新 的细胞分裂素激活酶,能够催化细胞分裂素合成途径的最后一步[19]。拟南芥 sps 突变体分枝数大大增加, 细胞分裂素含量是野生型植株的 3 ~ 9 倍,这说明 SPS 可能通过控制腋芽形成部位的细胞分裂素含量来抑 制腋芽的生长[20]。SPL9 抑制新叶的形成,spl9 突变体分蘖/分枝数大大增加[21]。 不结球白菜分蘖/分枝的研究目前还处于起步阶段。因此,本研究采用不同浓度的外源 GR24 处理不 结球白菜‘如皋毛菜’,调查其腋芽生长的动态变化,检测叶腋处细胞分裂素( Z+ZR) 、生长素( IAA) 含量 和分蘖/分枝相关基因的表达量,以探究外源 GR24 对不结球白菜分蘖/分枝生长的影响机制,为激素调控 不结球白菜分蘖/分枝生长的机制提供依据。 1 材料与方法 1.1 材料与外源 GR24 处理 不结球白菜( Brassica campestris ssp. chinensis Makino) 品种‘如皋毛菜’为南京农业大学白菜课题组保 存材料。试验所用试剂 GR24,购于北京大秦兴业科技有限公司。其余试剂均为分析纯。 不结球白菜播种穴盘,待 4 ~ 5 片真叶长出时,选取生长一致的幼苗,移栽到 MS 营养液中,气泵间断性 通气,每周换 1 次营养液; 11 ~ 12 片真叶长出时,部分腋芽开始生长,将配好的一定量的 GR24 母液加入到 MS 营养液中( GR24 母液先用少量的丙酮溶解后再用蒸馏水定容[22]) ,使其终浓度分别为 0、1.5 和 4.5 μmol·L-1 ,对照加入与处理等量的丙酮。分别于 GR24 处理后 0、3、6、12、24、36 和 48 h 取腋芽( 腋芽长度 大于 0.2 cm) 及腋芽周围 2 mm 的植物组织,用于 RNA 提取( 约 0. 1 g) 和激素含量的测定( 约 1. 0 g) , -70 ℃保存备用。分别于处理后 0、3、6、9、12 和 15 d 测量‘如皋毛菜’从外到里每个叶片叶腋处腋芽的长 度,并统计活动芽数和活动芽总长度。每个处理 3 次重复。 1.2 激素含量的测定 叶腋处的 Z+ZR 和 IAA 含量参照刘旭[23]的方法并适当改动。将样品( 1.00 g 左右) 放到预冷的研钵 中,加入 5 mL 预冷的 50%甲醇溶液( 体积分数) ,冰浴研磨成浆; 4 ℃ 下浸提 12 h,10 000 r·min-1 离心 10 min,取上清液保存于 4 ℃冰箱中; 残渣加入预冷的 50%甲醇溶液 3 mL 重复浸提 2 次,间隔 12 h,离心同 上,收集合并全部浸提液; 向提取液中加入 0.2 g PVPP 吸附酚类物质及色素,在摇床上 4 ℃ 振荡 60 min, 摇匀,离心同上; 将上清液缓慢过 C18小柱,流出液倒入 50 mL 小烧杯中进行冷冻干燥; 冻干样品用 2.5 mL 预冷的 50%甲醇溶液溶解,过 0.22 μm 的有机系超微滤膜,用于测定激素含量。超高效液相色谱( UPLC) 仪为 Agilent 1290 Infinity 系统,色谱条件为: 流动相为 0.6%乙酸( 体积分数) 和色谱级甲醇梯度洗脱( 表 1) ,柱温 35 ℃,进样量 2 μL,流速 0.3 mL·min-1 ,检测波长为 254 nm。 1.3 RNA 的提取和荧光定量 PCR 引物的设计 叶腋处 RNA 的具体提取方法参照植物 RNA 提取试剂盒说明书( TianGen 公司) 。按照 PrimeScript RT 763
368 南京农业大学学报 第39卷 试剂盒说明书(TaKaRa公司)将RNA反转录 表1梯度洗脱程序 为cDNA。 Table 1 Program of gradient elution 实时定量PCR检测分蘖/分枝相关的5个基因 《甲醇):《0.6%乙酸) t/min V(Methanol):V(0.6%acetic acid) 表达量,引物采用Bioxm2.7设计,内参基因为Actin, 0 10:90 试验所用引物由南京金斯瑞生物公司合成,荧光引 2 10:90 物信息序列见表2。定量体系参照TaKaRa公司 > 50:50 SYBR Premix Ex TagTM试剂盒说明书。荧光定量 9 50:50 PCR为美国应用生物系统公司的7500 Fast Real-. 9.1 10:90 Time PCR System。PCR程序采用两步法:95℃30s; 12 10:90 95℃3s,60℃30s,40个循环;设置60℃到95℃的熔解曲线。 表2荧光定量引物 Table 2 Primer of real-time PCR 基因名称 引物对名称 序列(5→3) Gene name Primer name Sequence BRCI(BRANCHED 1) q-BRCI AGAGAAGACGACCACAAGT/AAGTAGTCCAATTAACACCAGA MAX2(MORE AXILLARY GROWTH 2) q-MAX2 GATGATGGTGATGATGAT/TAGGTAGTGGTGTTAGAA LOG/(LONELY GUY Cytokinin-Activating Enzymes 1) q-0GI GGACTATTGAATGTGGAAGGATA/CGAGCAGTTGGTGTAATGA SPS(SUPERSHOOT) q-SPS AGGAACTTACAACGGAACA/TATCACTCTCATCTAACACATCA SPL9(SBP-ox genes) q-SPL9 AGTGGAGGGCTCATGTTTGG/TTCCACGTACCCTTCTGTTTGA Actin qActin GTTGCTATCCAGGCTGTTCT/AGCGTGAGGAAGAGCATAAC 1.4形态指标的测定 向营养液中加入GR24母液,使其终浓度分别为0、1.5和4.5μmolL,对照加入与处理等量的丙酮, 每3d换1次营养液并加入相应量的GR24母液。分别于处理后0、3、6、9、12和15d统计单株活动芽的 个数,并用直尺测量活动芽的长度,每处理10株,3次重复。 1.5数据分析和处理 数据采用Excel2003和SPSS17.0进行统计处理和单因素方差分析(One-way ANOVA),组间比较用 Duncan's检验。荧光定量PCR数据采用2-aacr进行计算分析。 2结果与分析 2.1外源GR24对不结球白菜如皋毛菜'腋芽生长的影响 21.1不结球白菜如皋毛菜'腋芽生长的动态调查‘如皋毛菜’长到约8片真叶时,腋芽形成,几乎每 个叶片的叶腋内都有腋芽长出;长到11~12片真叶时,腋芽开始萌动。由图1可知:当腋芽长度大于0.2 cm时,腋芽开始迅速伸长,而小于0.2cm的腋芽,处于基本不伸长或休眠状态,因而将大于0.2cm的腋芽 4.0r ▣0d:▣3d:☐6d:☑9d:☐12d:☒15d 3.5 3.0 2.5 2.0 1.5 1.0 0.5 4 5 6 10 11 12 叶位Leaf position 图1不结球白菜每叶腋处腋芽长度 Fig.1 Axillary bud length per leaf axil of non-heading Chinese cabbage 1~14按照叶片长出的先后顺序编号,1表示最外侧先长出真叶的叶位,14表示植株最内侧的叶位。 1-14 are the sequence number in accordance with the leaves,I shows the leaf position which grow true leaf firstly,and 14 shows the leaf position which grow true leaf lastly. ?1994-2016 China Academic Journal Electronic Publishing House.All rights reserved.http://www.cnki.net
南 京 农 业 大 学 学 报 第 39 卷 表 1 梯度洗脱程序 Table 1 Program of gradient elution t /min V( 甲醇) ∶V( 0.6%乙酸) V( Methanol) ∶V( 0.6% acetic acid) 0 10 ∶90 2 10 ∶90 7 50 ∶50 9 50 ∶50 9.1 10 ∶90 12 10 ∶90 试剂 盒 说 明 书 ( TaKaRa 公 司) 将 RNA 反 转 录 为cDNA。 实时定量 PCR 检测分蘖/分枝相关的 5 个基因 表达量,引物采用 Bioxm 2.7 设计,内参基因为 Actin, 试验所用引物由南京金斯瑞生物公司合成,荧光引 物信息 序 列 见 表 2。定 量 体 系 参 照 TaKaRa 公 司 SYBR Premix Ex TaqTM 试剂盒 说 明 书。荧 光 定 量 PCR 为美国应用生物系统公司的 7500 Fast RealTime PCR System。PCR 程序采用两步法: 95 ℃ 30 s; 95 ℃ 3 s,60 ℃ 30 s,40 个循环; 设置 60 ℃到 95 ℃的熔解曲线。 表 2 荧光定量引物 Table 2 Primer of real-time PCR 基因名称 Gene name 引物对名称 Primer name 序列( 5'→3') Sequence BRC1( BRANCHED 1) q-BRC1 AGAGAAGACGACCACAAGT/AAGTAGTCCAATTAACACCAGA MAX2( MORE AXILLARY GROWTH 2) q-MAX2 GATGATGGTGATGATGAT /TAGGTAGTGGTGTTAGAA LOG1( LONELY GUY Cytokinin-Activating Enzymes 1) q-LOG1 GGACTATTGAATGTGGAAGGATA/CGAGCAGTTGGTGTAATGA SPS( SUPERSHOOT) q-SPS AGGAACTTACAACGGAACA/TATCACTCTCATCTAACACATCA SPL9( SBP-box genes) q-SPL9 AGTGGAGGGCTCATGTTTGG /TTCCACGTACCCTTCTGTTTGA Actin q-Actin GTTGCTATCCAGGCTGTTCT /AGCGTGAGGAAGAGCATAAC 1.4 形态指标的测定 向营养液中加入 GR24 母液,使其终浓度分别为 0、1.5 和 4.5 μmol·L-1 ,对照加入与处理等量的丙酮, 每 3 d 换 1 次营养液并加入相应量的 GR24 母液。分别于处理后 0、3、6、9、12 和 15 d 统计单株活动芽的 个数,并用直尺测量活动芽的长度,每处理 10 株,3 次重复。 1.5 数据分析和处理 数据采用 Excel 2003 和 SPSS 17.0 进行统计处理和单因素方差分析( One-way ANOVA) ,组间比较用 Duncan's 检验。荧光定量 PCR 数据采用 2-ΔΔCT进行计算分析。 图 1 不结球白菜每叶腋处腋芽长度 Fig. 1 Axillary bud length per leaf axil of non-heading Chinese cabbage 1 ~ 14 按照叶片长出的先后顺序编号,1 表示最外侧先长出真叶的叶位,14 表示植株最内侧的叶位。 1-14 are the sequence number in accordance with the leaves,1 shows the leaf position which grow true leaf firstly,and 14 shows the leaf position which grow true leaf lastly. 2 结果与分析 2.1 外源 GR24 对不结球白菜‘如皋毛菜’腋芽生长的影响 2.1.1 不结球白菜‘如皋毛菜’腋芽生长的动态调查 ‘如皋毛菜’长到约 8 片真叶时,腋芽形成,几乎每 个叶片的叶腋内都有腋芽长出; 长到 11 ~ 12 片真叶时,腋芽开始萌动。由图 1 可知: 当腋芽长度大于 0.2 cm 时,腋芽开始迅速伸长,而小于 0.2 cm 的腋芽,处于基本不伸长或休眠状态,因而将大于 0.2 cm 的腋芽 863
第3期 崔红米,等:外源GR24对不结球白菜腋芽生长的影响 369 定义为活动芽,小于或等于0.2c的腋芽定义为休眠芽。位于中间叶位的腋芽最先开始萌动,而最里面 和最外面的腋芽生长比较晚或基本不生长。 2.1.2外源GR24对如皋毛菜'活动芽数和活动芽总长度的影响如图2-A所示:与对照相比,外源 GR24处理后3d开始,活动芽的个数显著减少(P<0.05);且12d以后,4.5molL1GR24处理的活动芽 数比1.5 mol.L GR:24处理显著减少;处理15d后,1.5 umol.L1GR24处理的活动芽个数比对照减少 11%,4.5μnol+L GR24处理比对照活动芽个数减少18%。表明外源GR24能够抑制休眠芽的萌发,且随 着处理时间的延长高浓度比低浓度对休眠芽萌发的抑制作用更为明显。从图2-B可以看出:与对照相 比,处理后3d,外源GR24就开始明显抑制腋芽的伸长,且总体来看,低浓度的GR24比高浓度的GR24更 能抑制腋芽的伸长,这说明低浓度的GR24比高浓度的GR24对腋芽伸长的抑制作用更为明显。这可能是 随着GR24浓度的升高,GR24分子的有效性对活动芽丧失[2a 10 12 8 10 6 auoLtial 0 3 691215 03 6 9 12 15 处理后时间/d Time after treatment 处理后时间/d Time after treatment ☐0μmolL-;☐1.5mol-L-;☐4.5umol-L 图2外源GR24对不结球白菜活动芽数(A)和活动芽总长(B)的影响 Fig.2 Effects of exogenous GR24 on the number(A)and the total length(B)of active buds in non-heading Chinese cabbage 不同小写字母表示同一时间不同处理间差异显著(P<0.05)。 Different small letters indicate significant difference between different treatments at the same time at 0.05 level.The same as follows. 2.2外源GR24对不结球白菜如皋毛菜'激素含量的影响 由图3-A可见:1.5 umol+L GR24处理后12h,叶腋内的Z+ZR含量比对照显著降低,到48h时,比 对照降低33%:而4.5μmol-L GR24处理后48h,叶腋内的Z+ZR含量显著低于对照,比对照低49%。这 说明,在降低叶腋处Z+ZR含量时,低浓度的GR24比高浓度的GR24发挥作用更早。 由图3-B可见:1.5μmolL的GR24处理后12h开始,叶腋内的IAA含量比对照显著降低,到48h 时,叶腋内的IAA含量比对照低42%;4.5 umol.L GR24处理后24h开始,叶腋内的IAA含量较对照有 明显的降低,48h时,比对照低48%。这说明外源GR24可能降低了IAA从源到库的运输能力,且低浓度 的GR24的作用更为显著。 1.6 A 1.6 B 1.4 1.4 》 12 1.0 1.0 0.8 0.8 0.6 - 0.4 0.2 0.2 0 3 6 12 24 36 48 3 6 12 24 36 处理后时间h Time after treatment 处理后时间/h Time after treatment ▣0mol-L';☐1.5molL;▣4.5 umol.L 图3外源GR24对不结球白菜叶腋内Z+ZR(A)和IAA(B)含量的影响 Fig.3 Effects of exogenous GR24 on the contents of Z+ZR(A)and IAA(B)in non-heading Chinese cabbage leaf axil 2.3外源GR24对不结球白菜如皋毛菜'分蘖/分枝相关基因表达的影响 由图4可见:4.5 umolL GR24处理后MAX2基因的表达量快速下降,到6h时降到最低,12h时逐 渐回升,36~48h又逐渐降低;1.5 umol+L1GR24处理和对照的MAX2表达量在处理后3h快速下降,之 后变化平缓。4.5 wmol .L1GR24处理后3h时,MAX2的表达量比对照有明显的升高趋势,而处理后 ?1994-2016 China Academic Journal Electronic Publishing House.All rights reserved.http://www.cnki.net
第 3 期 崔红米,等: 外源 GR24 对不结球白菜腋芽生长的影响 定义为活动芽,小于或等于 0.2 cm 的腋芽定义为休眠芽。位于中间叶位的腋芽最先开始萌动,而最里面 和最外面的腋芽生长比较晚或基本不生长。 2.1.2 外源 GR24 对‘如皋毛菜’活动芽数和活动芽总长度的影响 如图 2-A 所示: 与对照相比,外源 GR24 处理后 3 d 开始,活动芽的个数显著减少( P<0.05) ; 且 12 d 以后,4.5 μmol·L-1 GR24 处理的活动芽 数比 1.5 μmol·L-1 GR24 处理显著减少; 处理 15 d 后,1.5 μmol·L-1 GR24 处理的活动芽个数比对照减少 11%,4.5 μmol·L-1 GR24 处理比对照活动芽个数减少 18%。表明外源 GR24 能够抑制休眠芽的萌发,且随 着处理时间的延长高浓度比低浓度对休眠芽萌发的抑制作用更为明显。从图 2-B 可以看出: 与对照相 比,处理后 3 d,外源 GR24 就开始明显抑制腋芽的伸长,且总体来看,低浓度的 GR24 比高浓度的 GR24 更 能抑制腋芽的伸长,这说明低浓度的 GR24 比高浓度的 GR24 对腋芽伸长的抑制作用更为明显。这可能是 随着 GR24 浓度的升高,GR24 分子的有效性对活动芽丧失[22]。 图 2 外源 GR24 对不结球白菜活动芽数( A) 和活动芽总长( B) 的影响 Fig. 2 Effects of exogenous GR24 on the number( A) and the total length( B) of active buds in non-heading Chinese cabbage 不同小写字母表示同一时间不同处理间差异显著( P<0.05) 。 Different small letters indicate significant difference between different treatments at the same time at 0.05 level. The same as follows. 2.2 外源 GR24 对不结球白菜‘如皋毛菜’激素含量的影响 由图 3-A 可见: 1.5 μmol·L-1 GR24 处理后 12 h,叶腋内的 Z+ZR 含量比对照显著降低,到 48 h 时,比 对照降低 33%; 而 4.5 μmol·L-1 GR24 处理后 48 h,叶腋内的 Z+ZR 含量显著低于对照,比对照低 49%。这 说明,在降低叶腋处 Z+ZR 含量时,低浓度的 GR24 比高浓度的 GR24 发挥作用更早。 由图 3-B 可见: 1.5 μmol·L-1 的 GR24 处理后 12 h 开始,叶腋内的 IAA 含量比对照显著降低,到 48 h 时,叶腋内的 IAA 含量比对照低 42%; 4.5 μmol·L-1 GR24 处理后 24 h 开始,叶腋内的 IAA 含量较对照有 明显的降低,48 h 时,比对照低 48%。这说明外源 GR24 可能降低了 IAA 从源到库的运输能力,且低浓度 的 GR24 的作用更为显著。 图 3 外源 GR24 对不结球白菜叶腋内 Z+ZR( A) 和 IAA( B) 含量的影响 Fig. 3 Effects of exogenous GR24 on the contents of Z+ZR( A) and IAA( B) in non-heading Chinese cabbage leaf axil 2.3 外源 GR24 对不结球白菜‘如皋毛菜’分蘖/分枝相关基因表达的影响 由图 4 可见: 4.5 μmol·L-1 GR24 处理后 MAX2 基因的表达量快速下降,到 6 h 时降到最低,12 h 时逐 渐回升,36 ~ 48 h 又逐渐降低; 1.5 μmol·L-1 GR24 处理和对照的 MAX2 表达量在处理后 3 h 快速下降,之 后变化平缓。4. 5 μmol·L-1 GR24 处理后 3 h 时,MAX2 的表达量比对照有明显的升高趋势,而处理后 963
370 南京农业大学学报 第39卷 48h,MAX2的表达量与对照没有明显的区别:1.5 umol.L-的GR24处理后3h,MAX2的表达量较对照升 高,但没有高浓度的升高作用明显,48h后,MAX2的表达量与对照没有明显的区别。说明GR24施加到根 部后,很快由根部运输到腋芽发挥其作用,且腋芽对高浓度的GR24的响应更为明显。4.5μmol.L GR24 处理后24h,BRC1基因的表达量开始显著升高,36h时升到最高,48h又回降;1.5 umol.L1GR24处理后 BRC1基因的表达量先升后降,12h时降至最低,48h又快速升高;对照的BRCl基因表达量变化规律不明 显。4.5和1.5μumol·L1GR24处理后24h开始,BRC1基因的表达量均比对照有明显的升高,但 4.5 umol.L1GR24处理效果更明显。说明高浓度的GR24比低浓度对叶腋处BRC1基因表达量的影响更 为明显。 由图4可见:4.5和1.5μmol.L GR24处理后,L0G1基因表达量显著降低,48h时,4.5molL GR24处理L0G1基因的表达量显著低于1.5 mol.L GR24处理;对照L0G1基因的表达量先降后升,之 后再降并趋于平稳。GR24处理后3h开始,叶腋处的L0G1表达量显著低于对照,处理后24h开始,4.5 μmolL1GR24处理L0G1的表达量低于1.5μmolL1GR24处理,说明由根部运输到腋芽内的GR24可 以抑制腋芽内的LOG1表达,且随着时间的延长,高浓度的抑制作用更为明显。 4.5molL-1GR24处理后6h,SPS基因的表达量降低,12h时降至最低,24h时迅速升至最高,之后 回降:1.5 umolL GR24处理后3h,SPS表达量迅速降至最低,24h时开始回升,并至48h时升到最高: 对照的SPS表达量变化趋势与1.5umol·LGR24处理基本一致(图4)。外源GR24处理后24h开始, SPS表达量较对照升高,且4.5molL1GR24处理比1.5mol·LGR24处理升高的更为明显。4.5 umol.L1GR24处理后3h,SPL9基因的表达量迅速升高,12h时回降,之后又升高,24~48h又逐渐下降; 1.5 umol.L1GR24处理后,SPL9表达量0~6h呈下降趋势,6~24h变化不大,36h时又开始升高,之后 趋于稳定;对照的SPL9表达量12h时开始下降,之后趋于平稳。4.5 umol.L的GR24处理后3h,SPL9 表达量较对照有明显的升高,1.5 umol.L1GR24处理后12h,SPL9表达量较对照升高,且高浓度的升高 作用更为明显。总体来看,高浓度的GR24处理比低浓度的GR24处理对SPL9基因表达量的影响更大。 1.2r MAX2 8.0r BRCI 1.2 LOGI 1.0 1.0 6.0 0.8 0.8 0.6 4.0 0.6 2.0 0.2 0.2 0 3 612243648 03612243648 03612243648 处理后时间h 处理后时间h 处理后时间h Time after treatment Time after treatment Time after treatment 5.0r SPS 2.5 SPL9 4.0 2.0 是30 1.5 .0 1.0 03612243648 03 612243648 处理后时间h 处理后时间h Time after treatment Time after treatment ▣0μmol-L';☐1.5 umol.L;▣4.5 umol.L 图4外源GR24对不结球白菜叶腋内分蘖相关基因表达的影响 Fig.4 Effects of exogenous GR24 on the relative expression of branching related gene in non-heading Chinese cabbage leaf axil 3讨论与结论 分蘖/分枝影响不结球白菜的株型,进而影响其产量和品质等重要农艺性状。分蘖/分枝的生长发育, 可以分为腋芽的形成和腋芽的生长两个阶段。对分蘖/分枝生长影响最大的3种激素是生长素(IAA)、细 胞分裂素(CTK)和独脚金内酯(SLs),这3种激素之间相互影响,共同调控分蘖/分枝的生长[2。独脚金 ?1994-2016 China Academic Journal Electronic Publishing House.All rights reserved.http://www.cnki.net
南 京 农 业 大 学 学 报 第 39 卷 48 h,MAX2 的表达量与对照没有明显的区别; 1.5 μmol·L-1 的 GR24 处理后 3 h,MAX2 的表达量较对照升 高,但没有高浓度的升高作用明显,48 h 后,MAX2 的表达量与对照没有明显的区别。说明 GR24 施加到根 部后,很快由根部运输到腋芽发挥其作用,且腋芽对高浓度的 GR24 的响应更为明显。4.5 μmol·L-1 GR24 处理后 24 h,BRC1 基因的表达量开始显著升高,36 h 时升到最高,48 h 又回降; 1.5 μmol·L-1 GR24 处理后 BRC1 基因的表达量先升后降,12 h 时降至最低,48 h 又快速升高; 对照的 BRC1 基因表达量变化规律不明 显。4.5 和 1. 5 μmol·L-1 GR24 处理后 24 h 开 始,BRC1 基因的表达量均比对照有明显的升高,但 4.5 μmol·L-1 GR24 处理效果更明显。说明高浓度的 GR24 比低浓度对叶腋处 BRC1 基因表达量的影响更 为明显。 由图 4 可见: 4.5 和 1.5 μmol·L-1 GR24 处理后,LOG1 基因表达量显著降低,48 h 时,4.5 μmol·L-1 GR24 处理 LOG1 基因的表达量显著低于 1.5 μmol·L-1 GR24 处理; 对照 LOG1 基因的表达量先降后升,之 后再降并趋于平稳。GR24 处理后 3 h 开始,叶腋处的 LOG1 表达量显著低于对照,处理后24 h 开始,4.5 μmol·L-1 GR24 处理 LOG1 的表达量低于 1.5 μmol·L-1 GR24 处理,说明由根部运输到腋芽内的 GR24 可 以抑制腋芽内的 LOG1 表达,且随着时间的延长,高浓度的抑制作用更为明显。 4.5 μmol·L-1 GR24 处理后 6 h,SPS 基因的表达量降低,12 h 时降至最低,24 h 时迅速升至最高,之后 回降; 1.5 μmol·L-1 GR24 处理后 3 h,SPS 表达量迅速降至最低,24 h 时开始回升,并至 48 h 时升到最高; 对照的 SPS 表达量变化趋势与 1.5 μmol·L-1 GR24 处理基本一致( 图 4) 。外源 GR24 处理后 24 h 开始, SPS 表达量较对照升高,且 4. 5 μmol·L-1 GR24 处理比 1. 5 μmol·L-1 GR24 处理升高的更为明显。4. 5 μmol·L-1 GR24 处理后 3 h,SPL9 基因的表达量迅速升高,12 h 时回降,之后又升高,24 ~ 48 h 又逐渐下降; 1.5 μmol·L-1 GR24 处理后,SPL9 表达量 0 ~ 6 h 呈下降趋势,6 ~ 24 h 变化不大,36 h 时又开始升高,之后 趋于稳定; 对照的 SPL9 表达量 12 h 时开始下降,之后趋于平稳。4.5 μmol·L-1 的 GR24 处理后 3 h,SPL9 表达量较对照有明显的升高,1.5 μmol·L-1 GR24 处理后 12 h,SPL9 表达量较对照升高,且高浓度的升高 作用更为明显。总体来看,高浓度的 GR24 处理比低浓度的 GR24 处理对 SPL9 基因表达量的影响更大。 图 4 外源 GR24 对不结球白菜叶腋内分蘖相关基因表达的影响 Fig. 4 Effects of exogenous GR24 on the relative expression of branching related gene in non-heading Chinese cabbage leaf axil 3 讨论与结论 分蘖/分枝影响不结球白菜的株型,进而影响其产量和品质等重要农艺性状。分蘖/分枝的生长发育, 可以分为腋芽的形成和腋芽的生长两个阶段。对分蘖/分枝生长影响最大的 3 种激素是生长素( IAA) 、细 胞分裂素( CTK) 和独脚金内酯( SLs) ,这 3 种激素之间相互影响,共同调控分蘖/分枝的生长[24]。独脚金 073
第3期 崔红米,等:外源GR24对不结球白菜腋芽生长的影响 371 内酯作为一种新型的植物激素,受到了研究者的广泛重视,随着越来越多分蘖/分枝相关突变体的发现和 研究,植物体内独脚金内酯合成和信号途径以及独脚金内酯与其他信号共同调控植物分蘖/分枝的网络, 越来越清晰。 本研究结果表明:外源GR24能够抑制不结球白菜腋芽的萌发,且高浓度的GR24抑制作用更为明显: 外源GR24能够抑制活动芽的伸长,且低浓度比高浓度的GR24的作用更为明显。Xu等1)对水稻根部施 用一定浓度的外源GR24(2 umol-L)发现能够完全抑制水稻腋芽的生长;王玫等对一串红腋芽处施 用外源GR24的研究结果表明:GR24能够抑制一串红侧枝的伸长,且浓度越高,抑制作用越为明显,本研 究结果与之相一致。 关于独脚金内酯与生长素和细胞分裂素相互作用的调控网络,研究者们做了大量的研究,也提出了各 种假说,其中最具代表性的是渠化模型和第二信使模型。渠化模型研究者认为SLs通过影响IA的运输 调控腋芽的生长:第二信使模型研究者认为,SLs和CTK作为IAA的第二信使直接进入到腋芽内促进或 抑制腋芽的生长)。Xu等)研究表明:GR24不能明显降低水稻茎节内的细胞分裂素含量或细胞分裂 素合成相关基因的表达,但是却能够显著降低水稻茎节内IAA的含量和IAA的运输能力。在本研究中, 外源GR24处理后3,不结球白菜叶腋内的细胞分裂素合成基因L0G1基因的表达量明显降低,且低浓度 的外源GR24处理12h后,不结球白菜叶腋处的Z+ZR含量显著降低,高浓度的GR24处理后48h,不结 球白菜叶腋处的Z+ZR含量明显降低,这说明由根部运输到叶腋处的GR24通过抑制细胞分裂素合成基 因的表达来降低叶腋内细胞分裂素的含量,从而抑制腋芽的生长。外源GR24处理后,不结球白菜叶腋处 的IAA含量显著降低,这说明外源GR24会降低叶腋处IAA的含量,可能是外源GR24降低了IAA从源到 库的运输能力。本研究结果与X山等)的研究结果相一致。 SLs作为一类抑制植物分枝发育的植物激素,可与IAA和CTK协同调控植物的分蘖/分枝生长[9,同 时,SLs也可通过调控分蘖/分枝相关基因的表达来调控分蘖/分枝的生长。BRC1作为植物激素与环境信 号互作的集成器来调控植物分枝发育[,GR24处理后野生型豌豆腋芽内PsBRC1的表达量升高),CTK 能够降低PsBRCI的表达量9。Minakuchi等[8)对于水稻的研究结果表明FCI(BRCl在水稻中的同源基 因)位于SLs下游抑制腋芽的生长。Aguilar-Martinez等2]对拟南芥的研究也同样表明BRCI位于MAX途 径的下游。本研究结果表明:不结球白菜叶腋处MAX2基因的表达量在GR24处理后3h较对照明显升 高,且处理浓度越高升高越显著;BRC1的表达量在GR24处理后24h才明显升高,且浓度越高升高越明 显,这一结果说明在不结球白菜中BRC1基因可能在独角金内酯途径的下游发挥作用,即GR24可能通过 直接影响BRCI基因的表达来抑制腋芽的生长。 Tantikanjana等[2o的研究表明,在拟南芥中SPS负调控腋生分生组织的形成和生长,sps突变体产生 大量的腋芽,细胞分裂素含量升高了3~9倍,因而推测SPS基因通过调控腋芽内细胞分裂素的含量来控 制腋芽的生长。本研究表明,GR24处理后24h,叶腋内的SPS基因的表达量明显比对照升高,且浓度越 高升高作用越明显,这说明在不结球白菜中,外源GR24可能通过提高叶腋处SPS基因的表达量来抑制腋 芽的生长,但是关于SPS与其他信号之间的关系,还有待于进一步研究。Schwarz等[2的研究表明SPL9 抑制新叶的形成,SPL9功能缺失突变体分蘖/分枝数明显增加,同时SPL9受到miRNA156的调控。在本 研究中,较高浓度的GR24(4.5molL)处理后3h,腋芽内的SPL9的表达量较对照有明显的升高,低浓 度的GR24(1.5mol·L-)处理后12h,腋芽内的SPL9的表达量较对照升高,而高浓度的GR24对腋芽内 的GR24表达量的影响更为明显。这说明,GR24可以通过促进SPL9的表达来抑制腋芽的生长,且高浓度 的GR24的抑制作用更为明显。 综上所述,外源GR24能够通过不同的途径抑制不结球白菜腋芽的萌发和伸长;外源GR24可能由根 部运输到叶腋处直接抑制腋芽的萌发和伸长;同时运输到叶腋处的GR24还可能通过抑制细胞分裂素合 成基因的表达而降低叶腋处的细胞分裂素含量,从而抑制腋芽的生长;外源GR24还能够提高叶腋处SPS 基因和SPL9基因的表达来抑制腋芽的生长,但是关于SPS基因和SPL9基因与其他信号之间的关系,还 有待于进一步研究。 参考文献Reference: [1]冯丹,陈贵林.独脚金内酯调控侧枝发有的研究进展[J].生态学杂志,2011.30(2):349-356 ?1994-2016 China Academic Journal Electronic Publishing House.All rights reserved.http://www.cnki.net
第 3 期 崔红米,等: 外源 GR24 对不结球白菜腋芽生长的影响 内酯作为一种新型的植物激素,受到了研究者的广泛重视,随着越来越多分蘖/分枝相关突变体的发现和 研究,植物体内独脚金内酯合成和信号途径以及独脚金内酯与其他信号共同调控植物分蘖/分枝的网络, 越来越清晰。 本研究结果表明: 外源 GR24 能够抑制不结球白菜腋芽的萌发,且高浓度的 GR24 抑制作用更为明显; 外源 GR24 能够抑制活动芽的伸长,且低浓度比高浓度的 GR24 的作用更为明显。Xu 等[13]对水稻根部施 用一定浓度的外源 GR24( 2 μmol·L-1 ) 发现能够完全抑制水稻腋芽的生长; 王玫等[12]对一串红腋芽处施 用外源 GR24 的研究结果表明: GR24 能够抑制一串红侧枝的伸长,且浓度越高,抑制作用越为明显,本研 究结果与之相一致。 关于独脚金内酯与生长素和细胞分裂素相互作用的调控网络,研究者们做了大量的研究,也提出了各 种假说,其中最具代表性的是渠化模型和第二信使模型。渠化模型研究者认为 SLs 通过影响 IAA 的运输 调控腋芽的生长: 第二信使模型研究者认为,SLs 和 CTK 作为 IAA 的第二信使直接进入到腋芽内促进或 抑制腋芽的生长[17]。Xu 等[13]研究表明: GR24 不能明显降低水稻茎节内的细胞分裂素含量或细胞分裂 素合成相关基因的表达,但是却能够显著降低水稻茎节内 IAA 的含量和 IAA 的运输能力。在本研究中, 外源 GR24 处理后 3 h,不结球白菜叶腋内的细胞分裂素合成基因 LOG1 基因的表达量明显降低,且低浓度 的外源 GR24 处理 12 h 后,不结球白菜叶腋处的 Z+ZR 含量显著降低,高浓度的 GR24 处理后 48 h,不结 球白菜叶腋处的 Z+ZR 含量明显降低,这说明由根部运输到叶腋处的 GR24 通过抑制细胞分裂素合成基 因的表达来降低叶腋内细胞分裂素的含量,从而抑制腋芽的生长。外源 GR24 处理后,不结球白菜叶腋处 的 IAA 含量显著降低,这说明外源 GR24 会降低叶腋处 IAA 的含量,可能是外源 GR24 降低了 IAA 从源到 库的运输能力。本研究结果与 Xu 等[13]的研究结果相一致。 SLs 作为一类抑制植物分枝发育的植物激素,可与 IAA 和 CTK 协同调控植物的分蘖/分枝生长[19],同 时,SLs 也可通过调控分蘖/分枝相关基因的表达来调控分蘖/分枝的生长。BRC1 作为植物激素与环境信 号互作的集成器来调控植物分枝发育[19],GR24 处理后野生型豌豆腋芽内 PsBRC1 的表达量升高[13],CTK 能够降低 PsBRC1 的表达量[19]。Minakuchi 等[8]对于水稻的研究结果表明 FC1( BRC1 在水稻中的同源基 因) 位于 SLs 下游抑制腋芽的生长。Aguilar-Martínez 等[25]对拟南芥的研究也同样表明 BRC1 位于 MAX 途 径的下游。本研究结果表明: 不结球白菜叶腋处 MAX2 基因的表达量在 GR24 处理后 3 h 较对照明显升 高,且处理浓度越高升高越显著; BRC1 的表达量在 GR24 处理后 24 h 才明显升高,且浓度越高升高越明 显,这一结果说明在不结球白菜中 BRC1 基因可能在独角金内酯途径的下游发挥作用,即 GR24 可能通过 直接影响 BRC1 基因的表达来抑制腋芽的生长。 Tantikanjana 等[20]的研究表明,在拟南芥中 SPS 负调控腋生分生组织的形成和生长,sps 突变体产生 大量的腋芽,细胞分裂素含量升高了 3 ~ 9 倍,因而推测 SPS 基因通过调控腋芽内细胞分裂素的含量来控 制腋芽的生长。本研究表明,GR24 处理后 24 h,叶腋内的 SPS 基因的表达量明显比对照升高,且浓度越 高升高作用越明显,这说明在不结球白菜中,外源 GR24 可能通过提高叶腋处 SPS 基因的表达量来抑制腋 芽的生长,但是关于 SPS 与其他信号之间的关系,还有待于进一步研究。Schwarz 等[21]的研究表明 SPL9 抑制新叶的形成,SPL9 功能缺失突变体分蘖/分枝数明显增加,同时 SPL9 受到 miRNA156 的调控。在本 研究中,较高浓度的 GR24( 4.5 μmol·L-1 ) 处理后 3 h,腋芽内的 SPL9 的表达量较对照有明显的升高,低浓 度的 GR24( 1.5 μmol·L-1 ) 处理后 12 h,腋芽内的 SPL9 的表达量较对照升高,而高浓度的 GR24 对腋芽内 的 GR24 表达量的影响更为明显。这说明,GR24 可以通过促进 SPL9 的表达来抑制腋芽的生长,且高浓度 的 GR24 的抑制作用更为明显。 综上所述,外源 GR24 能够通过不同的途径抑制不结球白菜腋芽的萌发和伸长; 外源 GR24 可能由根 部运输到叶腋处直接抑制腋芽的萌发和伸长; 同时运输到叶腋处的 GR24 还可能通过抑制细胞分裂素合 成基因的表达而降低叶腋处的细胞分裂素含量,从而抑制腋芽的生长; 外源 GR24 还能够提高叶腋处 SPS 基因和 SPL9 基因的表达来抑制腋芽的生长,但是关于 SPS 基因和 SPL9 基因与其他信号之间的关系,还 有待于进一步研究。 参考文献 Reference: [1] 冯丹,陈贵林. 独脚金内酯调控侧枝发育的研究进展[J]. 生态学杂志,2011,30( 2) : 349-356. 173
372 南京农业大学学报 第39卷 Feng D.Chen G L.Shoot-branching control with stirgolactones research progresss [J].Chinese Jorunal of Ecology,2011,30(2):349-356 in Chinese with English abstract). [2]张荣样,杨清,赵德刚.新型植物激素一独脚金内酯[U].生物学通报.2011,46(5):10-13. Zhang R X,Yang Q,Zhao D G.New plant hormone:strigolactones [J].Bulletin of Biology,2011,46(5):10-13(in Chinese with English abstract). [3]Waldie T,McCulloch H,Leyser 0.Strigolactones and the control of plant development:lessons from shoot branching [J].The Plant Journal, 2014,79(4):607-622. [4]Arite T,Umehara M,Ishikawa S,et al.d/4,a strigolactone-insensitive mutant of rice,shows an accelerated outgrowth of tillers []]Plant and Cell Physiolog,2009,50(8):1416-1424. [5]Sorefan K,Booker J.Haurogne K.et al.MAX4 and RMSI are orthologous dioxygenase-ike genes that regulate shoot branching in Arabidopsis and pea[]].Genes and Development,2003,17(12):1469-1474. [6]Stimberg P,van de Sande K.Leyser H M O.MAXI and MAX2 control shoot lateral branching in Arabidopsis []Development.2002,129(5): 1131-1141. [7]Gomez-Roldan V,Fermas S,Brewer P B,et al.Strigolactone inhibition of shoot branching []Nature,2008.4455(7210):189-194. [8]Minakuchi K.Kameoka H.Yasuno N.et al.FINE CULMI(FCI)works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice [J].Plant and Cell Physiology,2010,51(7)1127-1135. [9]Booker J.Auldridge M.Wills S.et al.MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule [J].Current Biology,2004,14(14):1232-1238. [10]Lin H.Wang R.Qian Q.et al.DWARF27,an ironontaining protein required for the biosynthesis of strigolactones,regulates rice tiller bud outgrowth [J].The Plant Cell,2009,21(5):1512-1525. [11]Umehara M,Hanada A,Yoshida S,et al.Inhibition of shoot branching by new terpenoid plant hormones [J ]Nature,2008,455(7210): 195-200. [12]王玫.陈洪伟,刘克锋.外源GR24对一串红生长发有的影响[J].江苏农业科学.2015,43(2):164-167. Wang M,Chen H W,Liu K F.Effects of exogenous GR24 on the growth and development of tropical sage [J].Jiangsu Agricultural Sciences, 2015.43(2):164-167(in Chinese with English abstract). [13]Xu J,Zha M,Li Y,et al.The interaction between nitrogen availability and auxin,cytokinin.and strigolactone in the control of shoot branching in rice(Oryza satina L)[J].Plant Cell Reports,2015.34(9):1647-1662. [14]侯喜林,宋小明.不结球白菜种质资源的研究与利用[J].南京农业大学学报,2012.35(5):35-42.D0L:10.76855.issn.1000-2030. 2012.05.005. Hou X L.Song X M.Research and utilization of Brassica campestris ssp.chinensis Makino(non-heading Chinese cabbage)germplasm resources [J].Journal of Nanjing Agricultural University,2012,35(5):35-42(in Chinese with English abstract). [15]曹寿椿,李式军.白菜地方品种的初步研究[J】.南京农学院学报,1980(2):32-38.D0L:10.7685j.issm.1000-2030.1980.02.005 Cao SC.Li J.Preliminary study on local varieties of Chinese cabbage []Joumal of Nanjing Agricultural College,1980(2):32-38(in Chinese with English abstract). [16]Kebrom T H,Spielmeyer W.Finnegan E J.Grasses provide new insights into regulation of shoot branching].Trends in Plant Science,2013. 18(1):41-48. [17]Cheng X.Ruyter-Spira C.Bouwmeester H.The interaction between strigolactones and other plant hormones in the regulation of plant develop- ment [J].Frontiers in Plant Science,2013.4:199. [18]Germain A DS,Bonhomme S,Boyer FD.et al.Novel insights into strigolactone distribution and signalling Current Opinion in Plant Biology. 2013,16(5:583-589. [19]刘拥海,俞乐,丁君辉,等.植物激素对分枝发有的协同调控作用研究进展[J].植物生理学报.2012.48(10):941-948. Liu Y H.Yu L.Ding J H.et al.Research progress in synerigistic regulatory roles of phytohormones in shoot branching [Plant Physiology Journal,2012.48(10):941-948(in Chinese with English abstract). [20]Tantikanjana T.Yong JW H.Letham D S.et al.Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPER- SHOOT gene [J].Genes and Development.2001.15(12)1577-1588. [21]Schwarz S.Grande A V.Bujdoso N.et al.The mieroRNA regulated SBPbox genes SPL9 and SPL15 control shoot maturation in Arabidopsis [J]. Plant Molecular Biology,2008,67(1/2):183-195. [22]Luisi A.Lorenzi R.Sorce C.Strigolactone may interact with gibberellin to control apical dominance in pea(Pisum satim []Plant Growth Regulation,2011.65(2):415-419. [23]刘旭.成熟期不同的梨品种果实生长发育机理探究[D].雅安:四川农业大学,2008:37-39. Liu X.Studies on mechanism of fruit growth and development of different ripening-season of pears [D].Ya'an:Sichuan Agricultural University. 2008:37-39(in Chinese with English abstract). [24]Durbak A,Yao H,MeSteen P.Hormone signaling in plant development [J].Current Opinion in Plant Biology,2012.15(1):92-96. [25]Aguilar-Martinez J A,Poza-Carrion C.Cubas P.Arabidopsis BRANCHEDI acts as an integrator of branching signals within axillary buds [J].The Plant Cell.2007.19(2):458-472. 责任编辑:范雪梅 ?1994-2016 China Academic Journal Electronic Publishing House.All rights reserved.http://www.cnki.net
南 京 农 业 大 学 学 报 第 39 卷 Feng D,Chen G L. Shoot-branching control with stirgolactones research progresss[J]. Chinese Jorunal of Ecology,2011,30( 2) : 349 - 356 ( in Chinese with English abstract) . [2] 张荣祥,杨清,赵德刚. 新型植物激素———独脚金内酯[J]. 生物学通报,2011,46( 5) : 10-13. Zhang R X,Yang Q,Zhao D G. New plant hormone: strigolactones[J]. Bulletin of Biology,2011,46( 5) : 10-13( in Chinese with English abstract) . [3] Waldie T,McCulloch H,Leyser O. Strigolactones and the control of plant development: lessons from shoot branching[J]. The Plant Journal, 2014,79( 4) : 607-622. [4] Arite T,Umehara M,Ishikawa S,et al. d14,a strigolactone-insensitive mutant of rice,shows an accelerated outgrowth of tillers[J]. Plant and Cell Physiology,2009,50( 8) : 1416-1424. [5] Sorefan K,Booker J,Haurogné K,et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea[J]. Genes and Development,2003,17( 12) : 1469-1474. [6] Stirnberg P,van de Sande K,Leyser H M O. MAX1 and MAX2 control shoot lateral branching in Arabidopsis[J]. Development,2002,129( 5) : 1131-1141. [7] Gomez-Roldan V,Fermas S,Brewer P B,et al. Strigolactone inhibition of shoot branching[J]. Nature,2008,4455( 7210) : 189-194. [8] Minakuchi K,Kameoka H,Yasuno N,et al. FINE CULM1( FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice[J]. Plant and Cell Physiology,2010,51( 7) : 1127-1135. [9] Booker J,Auldridge M,Wills S,et al. MAX3 /CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule[J]. Current Biology,2004,14( 14) : 1232-1238. [10] Lin H,Wang R,Qian Q,et al. DWARF27,an iron-containing protein required for the biosynthesis of strigolactones,regulates rice tiller bud outgrowth[J]. The Plant Cell,2009,21( 5) : 1512-1525. [11] Umehara M,Hanada A,Yoshida S,et al. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature,2008,455 ( 7210) : 195-200. [12] 王玫,陈洪伟,刘克锋. 外源 GR24 对一串红生长发育的影响[J]. 江苏农业科学,2015,43( 2) : 164-167. Wang M,Chen H W,Liu K F. Effects of exogenous GR24 on the growth and development of tropical sage[J]. Jiangsu Agricultural Sciences, 2015,43( 2) : 164-167( in Chinese with English abstract) . [13] Xu J,Zha M,Li Y,et al. The interaction between nitrogen availability and auxin,cytokinin,and strigolactone in the control of shoot branching in rice( Oryza sativa L.) [J]. Plant Cell Reports,2015,34( 9) : 1647-1662. [14] 侯喜林,宋小明. 不结球白菜种质资源的研究与利用[J]. 南京农业大学学报,2012,35( 5) : 35- 42. DOI: 10. 7685 /j.issn. 1000- 2030. 2012.05.005. Hou X L,Song X M. Research and utilization of Brassica campestris ssp. chinensis Makino( non-heading Chinese cabbage) germplasm resources [J]. Journal of Nanjing Agricultural University,2012,35( 5) : 35-42( in Chinese with English abstract) . [15] 曹寿椿,李式军. 白菜地方品种的初步研究[J]. 南京农学院学报,1980( 2) : 32-38. DOI: 10.7685 /j.issn.1000-2030.1980.02.005. Cao S C,Li S J. Preliminary study on local varieties of Chinese cabbage[J]. Journal of Nanjing Agricultural College,1980( 2) : 32-38( in Chinese with English abstract) . [16] Kebrom T H,Spielmeyer W,Finnegan E J. Grasses provide new insights into regulation of shoot branching[J]. Trends in Plant Science,2013, 18( 1) : 41-48. [17] Cheng X,Ruyter-Spira C,Bouwmeester H. The interaction between strigolactones and other plant hormones in the regulation of plant development[J]. Frontiers in Plant Science,2013,4: 199. [18] Germain A D S,Bonhomme S,Boyer F D,et al. Novel insights into strigolactone distribution and signalling[J]. Current Opinion in Plant Biology, 2013,16( 5) : 583-589. [19] 刘拥海,俞乐,丁君辉,等. 植物激素对分枝发育的协同调控作用研究进展[J]. 植物生理学报,2012,48( 10) : 941-948. Liu Y H,Yu L,Ding J H,et al. Research progress in synerigistic regulatory roles of phytohormones in shoot branching[J]. Plant Physiology Journal,2012,48( 10) : 941-948( in Chinese with English abstract) . [20] Tantikanjana T,Yong J W H,Letham D S,et al. Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPER- SHOOT gene[J]. Genes and Development,2001,15( 12) : 1577-1588. [21] Schwarz S,Grande A V,Bujdoso N,et al. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis[J]. Plant Molecular Biology,2008,67( 1 /2) : 183-195. [22] Luisi A,Lorenzi R,Sorce C. Strigolactone may interact with gibberellin to control apical dominance in pea( Pisum sativum) [J]. Plant Growth Regulation,2011,65( 2) : 415-419. [23] 刘旭. 成熟期不同的梨品种果实生长发育机理探究[D]. 雅安: 四川农业大学,2008: 37-39. Liu X. Studies on mechanism of fruit growth and development of different ripening-season of pears[D]. Ya'an: Sichuan Agricultural University, 2008: 37-39( in Chinese with English abstract) . [24] Durbak A,Yao H,McSteen P. Hormone signaling in plant development[J]. Current Opinion in Plant Biology,2012,15( 1) : 92-96. [25] Aguilar-Martínez J A,Poza-Carrión C,Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J]. The Plant Cell,2007,19( 2) : 458-472. 责任编辑: 范雪梅 273