第12卷第4期 智能系统学报 Vol.12 No.4 2017年8月 CAAI Transactions on Intelligent Systems Aug.2017 D0I:10.11992/is.201605015 网络出版地址:http:/kns.cnki.net/kcms/detail/23.1538.tp.20170606.1114.006.html 差分进化算法综述 丁青锋,尹晓宇2 (1.华东交道大学电气与自动化工程学院,江西南昌330013:2.上海大学特种光纤与光接入重点实验室,上海200072) 摘要:差分进化算法由于算法结构简单易于执行,并且具有优化效率高、参数设置简单、鲁棒性好等优点,因此差 分进化算法吸引了越来越多研究者的关注。本文概述了差分进化算法的基本概念以及存在的问题,综述了差分进 化算法的控制参数、差分策略、种群结构以及与其他最优化算法混合等4个方面改进策略并讨论它们各自的优缺 点,为差分进化算法下一步的改进提出了参考方向。 关键词:差分进化:启发式并行搜索;差分策略;控制参数:种群结构;混合优化;收敛速度:优化效率 中图分类号:TP301文献标志码:A文章编号:1673-4785(2017)04-0431-12 中文引用格式:丁青锋,尹晓宇.差分进化算法综述[J].智能系统学报,2017,12(4):431-442. 英文引用格式:DING Qingfeng,YIN Xiaoyu..Research survey of differential evolution algorithms[J].CAAI transactions on intelligent systems,2017,12(4):431-442. Research survey of differential evolution algorithms DING Qingfeng',YIN Xiaoyu2 (1.School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China;2.Key Laboratory of Specialty Fiber Optics and Optical Access Networks,Shanghai University,Shanghai 200072,China) Abstract:Due to its simple algorithm structure,ease of performance,high optimization efficiency,simple parameter setting,and excellent robustness,the differential evolution (DE)algorithm has attracted increasing attention from researchers.In this paper,we outline the basic concepts of the DE algorithm as well as its limitations,and review four improvement strategies,including a control parameter,differential strategy,population structure,and mixing it with other optimization algorithms.We discuss the advantages and disadvantages of these strategies and suggest directions for future improvements to the DE algorithm. Keywords:differential evolution algorithm;heuristic parallel search;differential strategies;control parameter; population structure;mixed optimization;convergence rate;optimization efficiency 随着科技的进步和生产技术的发展,优化问题 数据”的涌现,现在的科学研究以及工程实践中优 几乎遍布科学研究及工程实践的各个领域,成为现 化问题通常具有规模大、复杂程度高以及包含大量 代科技不可或缺的理论基础和研究方法。而具有 局部最优解等特点,很多优化问题并没有明确的数 启发式和随机特性的进化算法,如遗传算法(genetic 学解析式,或者其本身就是非确定性多项式难题 algorithm,GA)[)、进化规划(evolution programming, (non-deterministic polynomial,NP),现有研究成果及 EP)[2)以及进化策略(evolution strategy,ES)l)具有 方法远远不能满足。 算法效率高、易操作以及简单通用等特点,也成为 差分进化算法(differential evolution,DE)作为 解决现实世界中优化问题的有效工具,取得了一些 一种新型、高效的启发式并行搜索技术,通过对现 有效的成果。但随着信息时代的快速发展以及“大 有优化方法进行大胆的扬弃,具有收敛快、控制参 数少且设置简单、优化结果稳健等优点[,对进化 收稿日期:2016-05-17.网络出版日期:2017-06-06 算法的理论和应用研究具有重要的学术意义。但 基金项目:国家自然科学基金项目(61501186):江西省普通本科高校中 青年教师发展计划访问学者专项资金项目:江西省自然科学 是,标准的DE算法也具有控制参数选择的压力大 基金项目(20171BAB202001):江西省教育厅科学基金项目 以及搜索能力与开发能力相矛盾的现象,往往容易 (GJ150491). 通信作者:丁青锋.E-mail:brandy724@sina.com
第 12 卷第 4 期 智 能 系 统 学 报 Vol.12 №.4 2017 年 8 月 CAAI Transactions on Intelligent Systems Aug. 2017 DOI:10.11992 / tis.201605015 网络出版地址:http: / / kns.cnki.net / kcms/ detail / 23.1538.tp.20170606.1114.006.html 差分进化算法综述 丁青锋1 ,尹晓宇2 (1.华东交通大学 电气与自动化工程学院,江西 南昌 330013; 2.上海大学 特种光纤与光接入重点实验室,上海 200072) 摘 要:差分进化算法由于算法结构简单易于执行,并且具有优化效率高、参数设置简单、鲁棒性好等优点,因此差 分进化算法吸引了越来越多研究者的关注。 本文概述了差分进化算法的基本概念以及存在的问题,综述了差分进 化算法的控制参数、差分策略、种群结构以及与其他最优化算法混合等 4 个方面改进策略并讨论它们各自的优缺 点,为差分进化算法下一步的改进提出了参考方向。 关键词:差分进化;启发式并行搜索;差分策略;控制参数;种群结构;混合优化;收敛速度;优化效率 中图分类号:TP301 文献标志码:A 文章编号:1673-4785(2017)04-0431-12 中文引用格式:丁青锋,尹晓宇.差分进化算法综述[J]. 智能系统学报, 2017, 12(4): 431-442. 英文引用格 式: DING Qingfeng, YIN Xiaoyu. Research survey of differential evolution algorithms [ J ]. CAAI transactions on intelligent systems, 2017, 12(4): 431-442. Research survey of differential evolution algorithms DING Qingfeng 1 , YIN Xiaoyu 2 (1. School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China; 2.Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072, China) Abstract:Due to its simple algorithm structure, ease of performance, high optimization efficiency, simple parameter setting, and excellent robustness, the differential evolution ( DE) algorithm has attracted increasing attention from researchers. In this paper, we outline the basic concepts of the DE algorithm as well as its limitations, and review four improvement strategies, including a control parameter, differential strategy, population structure, and mixing it with other optimization algorithms. We discuss the advantages and disadvantages of these strategies and suggest directions for future improvements to the DE algorithm. Keywords: differential evolution algorithm; heuristic parallel search; differential strategies; control parameter; population structure; mixed optimization; convergence rate; optimization efficiency 收稿日期:2016-05-17. 网络出版日期:2017-06-06. 基金项目:国家自然科学基金项目(61501186);江西省普通本科高校中 青年教师发展计划访问学者专项资金项目;江西省自然科学 基金项目( 20171BAB202001);江西省教育厅科学基金项目 (GJJ150491). 通信作者:丁青锋. E⁃mail:brandy724@ sina.com. 随着科技的进步和生产技术的发展,优化问题 几乎遍布科学研究及工程实践的各个领域,成为现 代科技不可或缺的理论基础和研究方法。 而具有 启发式和随机特性的进化算法,如遗传算法(genetic algorithm,GA) [1] 、进化规划( evolution programming, EP) [2]以及进化策略( evolution strategy,ES) [3] 具有 算法效率高、易操作以及简单通用等特点,也成为 解决现实世界中优化问题的有效工具,取得了一些 有效的成果。 但随着信息时代的快速发展以及“大 数据”的涌现,现在的科学研究以及工程实践中优 化问题通常具有规模大、复杂程度高以及包含大量 局部最优解等特点,很多优化问题并没有明确的数 学解析式,或者其本身就是非确定性多项式难题 (non⁃deterministic polynomial,NP),现有研究成果及 方法远远不能满足。 差分进化算法( differential evolution,DE) 作为 一种新型、高效的启发式并行搜索技术,通过对现 有优化方法进行大胆的扬弃,具有收敛快、控制参 数少且设置简单、优化结果稳健等优点[4] ,对进化 算法的理论和应用研究具有重要的学术意义。 但 是,标准的 DE 算法也具有控制参数选择的压力大 以及搜索能力与开发能力相矛盾的现象,往往容易
.432 智能系统学报 第12卷 造成种群个体早熟收敛、搜索停滞等诸多问题。尤 DE算法具有非常优秀的寻优能力,大量应用 其是对于某些理论计算复杂度较高的工程难题,用 于理论研究与工程实际中,如在信号处理[6、生 标准的DE算法难以有效解决,亟待提出稳健、快速 物[)、计算机网络[)、协同中继、卫星通信o]、机 收敛以及精确寻优的改进型DE算法。目前,针对 械设计与机器人)、电力电子2-)、电力系统 某些特定问题,不少文献提出了很多改进型的DE 电磁兼容s)、图像处理16)、工业控制)、天线设 算法。但是近几年国内很少有文献系统地阐述DE 计8】、电子设计[]等领域都取得了非常显著的效 算法优化过程中存在的问题以及研究这些问题所 果。DE算法的研究最多的领域为工程、数学、计算 产生的机理,给后续的研究者造成了很大的困扰, 机科学和物理,占了研究论文总数的近70%,其他 同时也使如何选择改进算法变得困难。 所有学科占了总数的30%左右。可以看出,对DE 算法的研究主要集中在工程、数学应用领域。 1国内外研究概况 DE算法性能分析与改进研究,主要针对DE算 1.1发展历史 法两个方面的缺陷进行:1)当种群个体无法继续寻 DE算法[)是由Store和Price于1997年提出的 找最优解,停止向全局最优方向进化的现象,即收 一种基于群体差异的启发式并行搜索方法,提出的 缩停滞问题:2)种群个体失去多样性,陷入局部最 初衷是为了求解切比雪夫多项式问题。作为一种 优解的现象,即早熟收敛问题。而国内外学者对其 基于群体导向的随机搜索技术,DE算法包括初始 改进策略主要集中在以下4个方面:控制参数设置、 化、变异、交叉以及选择等操作:与其他优化算法不 进化策略选择、种群结构以及与其他优化算法混合。 同在于,DE算法的进化个体扰动是通过多个个体 目前,DE算法已拓展到多目标优化领域。文 的差分信息来体现的,如图1所示。 献[20]提出基于差分进化算法的多目标优化算法, 100 该算法在变异阶段利用多导向器代替传统的基向 量选择解决约束优化问题,另外采用非支配排序法 和二级种群求解非支配解:MO-ABC/DE算法[21]则 通过结合人工蜂群算法(artificial bee colony,ABC) 与DE算法的集体智慧解决非约束多目标优化问 题:Coelho等[22]提出一种基于截断伽马概率分布的 50 多目标DE算法用以解决变压器设计问题:Wu 等[2]提出MOSADE算法解决混合动力车中部件尺 -100 100 -50 50 100 寸与控制策略并行优化问题;Cheng等[2提出两阶 段多目标DE算法解决资源有限项目中的时间-成 图1二维差分进化算法的进化步骤 本权衡问题:为了获得目标表面噪声的非劣最优 Fig.1 The evolutional step of 2-D differential evolution 解,Rakshit等提出3种新的选择策略用以提高多目 由于DE算法在不同进化阶段个体间的差异性 标DE算法性能:文献[25]提出基于特征提取与集 会随之变化,因此不同阶段会出现不同的搜索能力 成学习技术的多目标DE算法用于生物实体提取; 和开发能力:进化初期的个体差异性较大,DE算法 Caravggi等[2结合DE算法和SPEA算法用于解决 将在较大范围内进行搜索最优解,因此这个阶段的 电磁问题。 搜索能力较强:进化末期种群趋于逐渐收敛的状 在国内,孟红云等]提出一种基于双群体搜索 态,个体间差异性较小,因此这个阶段的开发能力 机制的求解约束多目标优化问题的DE算法;毕晓 较强。正是这种种群自我调节能力,从而使DE算 君等[2]通过云模型对DE算法的参数进行自适应 法具有广泛的适用能力。DE算法作为一种启发式 处理,增强算法对解的探索能力:郭俊等[]利用改 并行搜索方法,因其突出的优化性能受到越来越多 进的多目标DE算法解决铝电解多目标优化问题: 研究者的广泛关注。 严细辉等0)利用模拟退火思想改进多目标DE算 1.2研究概况 法解决以能耗、实际区间运行时间、精确停车及不 目前,DE算法已成为进化计算领域的研究热 舒适度为指标建立高速列车运行操纵多目标优化 点之一,每年都有大量的研究文献出版。从近几年 问题。 SCI收录的DE算法论文分布情况可以看出,对差分 2 差分进化算法存在的问题 进化的研究呈逐年上升的趋势,但在数量上还远不 及遗传算法及其他优化方法。 DE算法从生物进化得到启发,利用群体的优
造成种群个体早熟收敛、搜索停滞等诸多问题。 尤 其是对于某些理论计算复杂度较高的工程难题,用 标准的 DE 算法难以有效解决,亟待提出稳健、快速 收敛以及精确寻优的改进型 DE 算法。 目前,针对 某些特定问题,不少文献提出了很多改进型的 DE 算法。 但是近几年国内很少有文献系统地阐述 DE 算法优化过程中存在的问题以及研究这些问题所 产生的机理,给后续的研究者造成了很大的困扰, 同时也使如何选择改进算法变得困难。 1 国内外研究概况 1.1 发展历史 DE 算法[5]是由 Store 和 Price 于 1997 年提出的 一种基于群体差异的启发式并行搜索方法,提出的 初衷是为了求解切比雪夫多项式问题。 作为一种 基于群体导向的随机搜索技术,DE 算法包括初始 化、变异、交叉以及选择等操作;与其他优化算法不 同在于,DE 算法的进化个体扰动是通过多个个体 的差分信息来体现的,如图 1 所示。 图 1 二维差分进化算法的进化步骤 Fig.1 The evolutional step of 2⁃D differential evolution 由于 DE 算法在不同进化阶段个体间的差异性 会随之变化,因此不同阶段会出现不同的搜索能力 和开发能力:进化初期的个体差异性较大,DE 算法 将在较大范围内进行搜索最优解,因此这个阶段的 搜索能力较强;进化末期种群趋于逐渐收敛的状 态,个体间差异性较小,因此这个阶段的开发能力 较强。 正是这种种群自我调节能力,从而使 DE 算 法具有广泛的适用能力。 DE 算法作为一种启发式 并行搜索方法,因其突出的优化性能受到越来越多 研究者的广泛关注。 1.2 研究概况 目前,DE 算法已成为进化计算领域的研究热 点之一,每年都有大量的研究文献出版。 从近几年 SCI 收录的 DE 算法论文分布情况可以看出,对差分 进化的研究呈逐年上升的趋势,但在数量上还远不 及遗传算法及其他优化方法。 DE 算法具有非常优秀的寻优能力,大量应用 于理论研究与工程实际中,如在信号处理[6] 、 生 物[7] 、计算机网络[8] 、协同中继[9] 、卫星通信[10] 、机 械设计与机器人[11] 、电力电子[12-13] 、电力系统[14] 、 电磁兼容[15] 、图像处理[16] 、工业控制[17] 、天线设 计[18] 、电子设计[19] 等领域都取得了非常显著的效 果。 DE 算法的研究最多的领域为工程、数学、计算 机科学和物理,占了研究论文总数的近 70%,其他 所有学科占了总数的 30%左右。 可以看出,对 DE 算法的研究主要集中在工程、数学应用领域。 DE 算法性能分析与改进研究,主要针对 DE 算 法两个方面的缺陷进行:1)当种群个体无法继续寻 找最优解,停止向全局最优方向进化的现象,即收 缩停滞问题;2) 种群个体失去多样性,陷入局部最 优解的现象,即早熟收敛问题。 而国内外学者对其 改进策略主要集中在以下 4 个方面:控制参数设置、 进化策略选择、种群结构以及与其他优化算法混合。 目前,DE 算法已拓展到多目标优化领域。 文 献[20]提出基于差分进化算法的多目标优化算法, 该算法在变异阶段利用多导向器代替传统的基向 量选择解决约束优化问题,另外采用非支配排序法 和二级种群求解非支配解;MO⁃ABC / DE 算法[21] 则 通过结合人工蜂群算法( artificial bee colony,ABC) 与 DE 算法的集体智慧解决非约束多目标优化问 题;Coelho 等[22]提出一种基于截断伽马概率分布的 多目标 DE 算 法 用 以 解 决 变 压 器 设 计 问 题; Wu 等[23]提出 MOSADE 算法解决混合动力车中部件尺 寸与控制策略并行优化问题;Cheng 等[24] 提出两阶 段多目标 DE 算法解决资源有限项目中的时间-成 本权衡问题;为了获得目标表面噪声的非劣最优 解,Rakshit 等提出 3 种新的选择策略用以提高多目 标 DE 算法性能;文献[25]提出基于特征提取与集 成学习技术的多目标 DE 算法用于生物实体提取; Caravggi 等[26]结合 DE 算法和 SPEA 算法用于解决 电磁问题。 在国内,孟红云等[27]提出一种基于双群体搜索 机制的求解约束多目标优化问题的 DE 算法;毕晓 君等[28] 通过云模型对 DE 算法的参数进行自适应 处理,增强算法对解的探索能力;郭俊等[29] 利用改 进的多目标 DE 算法解决铝电解多目标优化问题; 严细辉等[30] 利用模拟退火思想改进多目标 DE 算 法解决以能耗、实际区间运行时间、精确停车及不 舒适度为指标建立高速列车运行操纵多目标优化 问题。 2 差分进化算法存在的问题 DE 算法从生物进化得到启发,利用群体的优 ·432· 智 能 系 统 学 报 第 12 卷
第4期 丁青锋,等:差分进化算法综述 ·433. 势以及并行分布的特点,为解决实际复杂优化问题 大[3]:但种群规模N。过大则会降低找到正确搜索 提供了一种可行途径。但算法中涉及的各种控制 方向的可能性[3) 参数的设置以及进化策略的选择通常都是依据经 2)控制参数。文献[34]指出,种群个体多样性 验确定的,缺乏理论的分析和指导,因此在进行各 的丧失是引发种群早熟的直接诱因。为保持种群 种实际复杂问题优化时易陷入局部最优,出现早熟 多样性,控制参数设置是否合适就显得尤为重要。 收敛或者搜索停滞等现象[3) 其中收缩因子F需要保持一定的变化范围:交叉因 2.1差分进化算法的早熟收敛问题 子CR的大小决定种群个体中元素被替代的程度: DE算法通常是一种在搜索空间内有效的搜索 较小的CR值将造成种群的多样性变化不显著,搜 算法。其中控制参数的设置与进化策略的选择是 索速度也将变慢:较大的CR值意味着种群多样性 决定算法性能好坏的关键,一旦选择不当,往往容 更好,但不利于算法的开发能力,因此算法的收敛 易造成进化种群过早地失去多样性,使种群个体集 性能将会受到影响[3] 中到某一局部最优点,导致种群整体早熟收敛,无 3)进化策略:搜索能力与开发能力是差分进化 法实现向全局最优进化[32】,从图2中可以清楚地看 算法性能重要的标准。其中搜索能力推动在更大 出其全局最优解及局部最优解的分布。一旦进化 范围搜索,从而使候选解具有多样性,因此可提高 个体收敛到局部最优解,新生个体很难获得更优 找到全局最优解的可能性,但搜索能力过强则易导 解,进而出现早熟收敛的情况。 致搜索停滞:开发能力推动在局部最优解附近的搜 索,因此有利于收敛,但开发能力过强则易导致早 ×10 熟收敛36]。进化策略的选择是决定差分进化算法 搜索能力与开发能力平衡的关键,不同的进化策略 3 2 表现出不同的搜索与开发能力的倾向。不同的变 异和交叉策略对算法的收敛性能有不同的影响。 0 针对上述进化种群早熟收敛的问题,很多学者 提出了多种改进的方法,通过设置合适参数和选择 2 恰当的进化策略,以希望在算法有效性(候选解的 质量)和效率(收敛速度)之间达到平衡,主要手段 (a)多峰函数 包括:控制参数调节[7-9]、局部优化[o]和混合其他 优化算法41-。其中,局部优化通过在搜索到的最 优解附近进行精细搜索,最终实现优化结果精确度 局部最优解 的提高。然而,自适应变异策略一方面可以赋予进 化算法快速精确地定位局部最优解,另一方面也是 局部最优解 易陷入早熟收敛从而导致寻优失败[)]。提高种群 全局最优图 的多样性可以增强算法搜索大空间的能力,避免早 熟收敛问题的发生;然而,增强种群多元性虽然能 搜索到更大的空间,但容易降低种群进化的收敛速 0 2 度,甚至陷入局部最优从而导致优化失败。 (b)最优解分布 算法整体收敛速度也是DE算法的一个重要指 图2多峰函数的早熟收敛 标。虽然已有不少文献提出了许多改进算法,但是 Fig.2 The premature convergence of multi-peaks function 针对某些特定问题,其优化结果往往很难令人满 影响DE算法早熟收敛的主要因素可以归纳为 意。对于一种优化算法来说,在保证一定收敛速度 以下几点: 的同时,避免算法陷入早熟收敛是一个需要平衡的 1)种群初始化及种群规模。若种群初始化分 难题。因此,差分进化算法仍需要改进,以适应更 布在解空间的局部区域,则易造成算法收缩空间受 多的优化环境。 限。如果进化种群过小,容易造成有效等位基因的 2.2差分进化算法的搜索停滞问题 缺失,从而降低生成具有竞争力的个体可能性进而 假如进化算法变异、交叉后所产生的进化种群 增加种群早熟收敛的可能性)。为了保持足够的 个体比原种群个体的适应度差,则进化个体的更新 种群多样性,避免早熟收敛,种群规模V。应该足够 机制就陷入停顿,即算法的进一步迭代很难产生适 应度更好的个体,最终导致搜索停滞现象的发生
势以及并行分布的特点,为解决实际复杂优化问题 提供了一种可行途径。 但算法中涉及的各种控制 参数的设置以及进化策略的选择通常都是依据经 验确定的,缺乏理论的分析和指导,因此在进行各 种实际复杂问题优化时易陷入局部最优,出现早熟 收敛或者搜索停滞等现象[31] 。 2.1 差分进化算法的早熟收敛问题 DE 算法通常是一种在搜索空间内有效的搜索 算法。 其中控制参数的设置与进化策略的选择是 决定算法性能好坏的关键,一旦选择不当,往往容 易造成进化种群过早地失去多样性,使种群个体集 中到某一局部最优点,导致种群整体早熟收敛,无 法实现向全局最优进化[32] ,从图 2 中可以清楚地看 出其全局最优解及局部最优解的分布。 一旦进化 个体收敛到局部最优解,新生个体很难获得更优 解,进而出现早熟收敛的情况。 (a)多峰函数 (b)最优解分布 图 2 多峰函数的早熟收敛 Fig.2 The premature convergence of multi⁃peaks function 影响 DE 算法早熟收敛的主要因素可以归纳为 以下几点: 1)种群初始化及种群规模。 若种群初始化分 布在解空间的局部区域,则易造成算法收缩空间受 限。 如果进化种群过小,容易造成有效等位基因的 缺失,从而降低生成具有竞争力的个体可能性进而 增加种群早熟收敛的可能性[31] 。 为了保持足够的 种群多样性,避免早熟收敛,种群规模 NP 应该足够 大[33] ;但种群规模 NP 过大则会降低找到正确搜索 方向的可能性[31] 。 2)控制参数。 文献[34]指出,种群个体多样性 的丧失是引发种群早熟的直接诱因。 为保持种群 多样性,控制参数设置是否合适就显得尤为重要。 其中收缩因子 F 需要保持一定的变化范围;交叉因 子 CR 的大小决定种群个体中元素被替代的程度: 较小的 CR 值将造成种群的多样性变化不显著,搜 索速度也将变慢;较大的 CR 值意味着种群多样性 更好,但不利于算法的开发能力,因此算法的收敛 性能将会受到影响[35] 。 3)进化策略:搜索能力与开发能力是差分进化 算法性能重要的标准。 其中搜索能力推动在更大 范围搜索,从而使候选解具有多样性,因此可提高 找到全局最优解的可能性,但搜索能力过强则易导 致搜索停滞;开发能力推动在局部最优解附近的搜 索,因此有利于收敛,但开发能力过强则易导致早 熟收敛[36] 。 进化策略的选择是决定差分进化算法 搜索能力与开发能力平衡的关键,不同的进化策略 表现出不同的搜索与开发能力的倾向。 不同的变 异和交叉策略对算法的收敛性能有不同的影响。 针对上述进化种群早熟收敛的问题,很多学者 提出了多种改进的方法,通过设置合适参数和选择 恰当的进化策略,以希望在算法有效性(候选解的 质量)和效率(收敛速度)之间达到平衡,主要手段 包括:控制参数调节[37-39] 、局部优化[40] 和混合其他 优化算法[41-42] 。 其中,局部优化通过在搜索到的最 优解附近进行精细搜索,最终实现优化结果精确度 的提高。 然而,自适应变异策略一方面可以赋予进 化算法快速精确地定位局部最优解,另一方面也是 易陷入早熟收敛从而导致寻优失败[43] 。 提高种群 的多样性可以增强算法搜索大空间的能力,避免早 熟收敛问题的发生;然而,增强种群多元性虽然能 搜索到更大的空间,但容易降低种群进化的收敛速 度,甚至陷入局部最优从而导致优化失败。 算法整体收敛速度也是 DE 算法的一个重要指 标。 虽然已有不少文献提出了许多改进算法,但是 针对某些特定问题,其优化结果往往很难令人满 意。 对于一种优化算法来说,在保证一定收敛速度 的同时,避免算法陷入早熟收敛是一个需要平衡的 难题。 因此,差分进化算法仍需要改进,以适应更 多的优化环境。 2.2 差分进化算法的搜索停滞问题 假如进化算法变异、交叉后所产生的进化种群 个体比原种群个体的适应度差,则进化个体的更新 机制就陷入停顿,即算法的进一步迭代很难产生适 应度更好的个体,最终导致搜索停滞现象的发生。 第 4 期 丁青锋,等:差分进化算法综述 ·433·
·434 智能系统学报 第12卷 如图3所示,若6个候选个体的适应度函数值皆劣 数,初值为0,i=1,2,…,Np。若{nu.c}持续增加,则 于个体A,则个体A将保留到下一代。若个体B、C、 说明DE算法无法为目标个体i产生极值解。 D也重复个体A的情况,意味着下一代种群与现有 克服进化算法搜索停滞的一般方法是在算法 种群相同,即出现搜索停滞的情况。因此虽然种群 中引入能够在整个解空间中进行广泛搜索的策略, 仍然保持多样性,但无法再进一步收敛。 另外通过jitter/dither扰动技术,也可以降低搜索停 15f 滞出现的概率[]。在不改变种群规模的情况下,文 献[46]指出,通过收缩因子F和增大交叉因子CR 可以增加种群个体的多样性:文献[33]指出,通过 5 设置收缩因子F在进化过程中为随机数,可以有效 ●C A 增加候选个体的数量,实现算法稳定性的提高。 B 也有学者4]为平衡算法集中搜索与多样化搜 -5 ●D 索策略之间的矛盾,提出外在的种群多样化测度方 法,根据群体多样化测度值在算法的不同搜索阶段 -10 使用不同搜索策略,从而克服搜索停滞的缺陷。但 -15 群体多样化测度方法通常是针对某一算法构造的, -15 -10 -5 0 5 1015 缺乏对搜索停滞的起因、表现特征深入系统的研 (a)现有种群 究,因此具有较大的局限性。 在研究DE算法大量文献中,很少提及搜索停 15 滞问题产生机理。文献[48]进一步对群体优化算 10 法的搜索机理进行探讨,针对集中化搜索与多样化 搜索对进化停滞的影响进行了研究,从而证明了集 5 中化搜索策略具有将候选解趋于单一化的特点,是 A 0 导致算法搜索停滞的主要原因:而多样化搜索策略 00 则具有将候选解泛化的特点,即从任何一个候选解 -5 中o 可以搜索到整个解空间的任意一点,但其缺点是使 -10 算法不收敛。文献[44]指出,无法确切地发现搜素 停滞的原理,但是通过增加种群个体的多样性及规 -15 -15-10-5 051015 模可以在一定程度上降低该问题出现的概率。 (b)个体A的候选个体 3差分进化算法的改进策略 图3差分进化算法搜索停滞 针对DE算法的理论研究主要集中在如何提高 Fig.3 Search stagnation of DE 算法的寻优能力、收敛速度以及克服启发式算法常 DE算法出现搜索停滞具有以下两个特征4: 见的早熟收敛以及搜索停滞等缺陷方面。近年来, 1)种群个体不收敛:2)个体进化更新机制失效。 研究人员从多个角度不断改进算法以适应更为复 当DE算法搜索停滞发生时,停滞特征1)可以 杂的优化问题和满足更高的求解质量,改进算法大 用第G代的目标个体与其重心之间的平均距离来 致分为控制参数设置、差分策略选择、种群结构以 描述: 及与其他最优化算法混合等四大类。 de=(1/Np)∑Ixc-el (1) 1)控制参数 式中:&=(1/N,)∑”xe为标个体的重心。若 DE算法的控制参数主要有种群规模Vp、缩放 因子F以及交叉概率CR。如果参数选择不恰当 平均距离没有下降到一个很小值,则意味着种群未 可能会由于过度强调搜索能力导致算法搜索停滞 收敛到一个极值点。 或者过度强调开发能力导致算法早熟收敛。其中 DE算法发生搜索停滞时的特征2)可以用第G 种群规模主要影响种群的多样性以及收敛速度:增 代目标个体最近连续未更新次数来描述: 大N。可以提高种群的多样性,但同时降低种群的 (0,fu.c)≤fx.c) nui.G+1= (2) 收敛速度:减小N可以提高收敛速度,但易导致早 (n.c+1,其他 熟收敛。缩放因子F主要影响搜索步长:增大F可 式中:n.c为第G代目标个体i未最近连续更新次 以增加算法的搜索范围,提高种群多样性但同时消
如图 3 所示,若 6 个候选个体的适应度函数值皆劣 于个体 A,则个体 A 将保留到下一代。 若个体 B、C、 D 也重复个体 A 的情况,意味着下一代种群与现有 种群相同,即出现搜索停滞的情况。 因此虽然种群 仍然保持多样性,但无法再进一步收敛。 (a) 现有种群 (b)个体 A 的候选个体 图 3 差分进化算法搜索停滞 Fig.3 Search stagnation of DE DE 算法出现搜索停滞具有以下两个特征[44] : 1)种群个体不收敛;2)个体进化更新机制失效。 当 DE 算法搜索停滞发生时,停滞特征 1)可以 用第 G 代的目标个体与其重心之间的平均距离来 描述: dG = (1 / NP )∑ NP 1 ‖xi,G - x - G‖ (1) 式中: x - G = (1 / NP )∑ NP 1 xi,G 为目标个体的重心。 若 平均距离没有下降到一个很小值,则意味着种群未 收敛到一个极值点。 DE 算法发生搜索停滞时的特征 2)可以用第 G 代目标个体最近连续未更新次数来描述: nui,G+1 = 0, f(ui,G ) ≤ f(xi,G ) ni,G { + 1, 其他 (2) 式中:nui,G为第 G 代目标个体 i 未最近连续更新次 数,初值为 0,i = 1,2,…,NP 。 若 nui,G { }持续增加,则 说明 DE 算法无法为目标个体 i 产生极值解。 克服进化算法搜索停滞的一般方法是在算法 中引入能够在整个解空间中进行广泛搜索的策略, 另外通过 jitter/ dither 扰动技术,也可以降低搜索停 滞出现的概率[45] 。 在不改变种群规模的情况下,文 献[46]指出,通过收缩因子 F 和增大交叉因子 CR 可以增加种群个体的多样性;文献[33] 指出,通过 设置收缩因子 F 在进化过程中为随机数,可以有效 增加候选个体的数量,实现算法稳定性的提高。 也有学者[47] 为平衡算法集中搜索与多样化搜 索策略之间的矛盾,提出外在的种群多样化测度方 法,根据群体多样化测度值在算法的不同搜索阶段 使用不同搜索策略,从而克服搜索停滞的缺陷。 但 群体多样化测度方法通常是针对某一算法构造的, 缺乏对搜索停滞的起因、表现特征深入系统的研 究,因此具有较大的局限性。 在研究 DE 算法大量文献中,很少提及搜索停 滞问题产生机理。 文献[48] 进一步对群体优化算 法的搜索机理进行探讨,针对集中化搜索与多样化 搜索对进化停滞的影响进行了研究,从而证明了集 中化搜索策略具有将候选解趋于单一化的特点,是 导致算法搜索停滞的主要原因;而多样化搜索策略 则具有将候选解泛化的特点,即从任何一个候选解 可以搜索到整个解空间的任意一点,但其缺点是使 算法不收敛。 文献[44]指出,无法确切地发现搜素 停滞的原理,但是通过增加种群个体的多样性及规 模可以在一定程度上降低该问题出现的概率。 3 差分进化算法的改进策略 针对 DE 算法的理论研究主要集中在如何提高 算法的寻优能力、收敛速度以及克服启发式算法常 见的早熟收敛以及搜索停滞等缺陷方面。 近年来, 研究人员从多个角度不断改进算法以适应更为复 杂的优化问题和满足更高的求解质量,改进算法大 致分为控制参数设置、差分策略选择、种群结构以 及与其他最优化算法混合等四大类。 1)控制参数 DE 算法的控制参数主要有种群规模 NP 、缩放 因子 F 以及交叉概率 CR。 如果参数选择不恰当, 可能会由于过度强调搜索能力导致算法搜索停滞 或者过度强调开发能力导致算法早熟收敛。 其中 种群规模主要影响种群的多样性以及收敛速度:增 大 NP 可以提高种群的多样性,但同时降低种群的 收敛速度;减小 NP 可以提高收敛速度,但易导致早 熟收敛。 缩放因子 F 主要影响搜索步长:增大 F 可 以增加算法的搜索范围,提高种群多样性但同时消 ·434· 智 能 系 统 学 报 第 12 卷
第4期 丁青锋,等:差分进化算法综述 ·435. 弱算法的开发能力:减小F可以增加算法的开发能 关于控制参数设置的研究主要集中在以下3 力,提高算法的收敛速度,但同时陷入早熟收敛的 种方式:固定、随机以及自适应。在经典DE算法 风险。交叉概率CR影响进化信息的调整权重:增 中采用的是参数固定设置的方式,即参数在搜索 大CR可以提高种群多样性:减小CR有利于分析个 之前预先设置好并且在整个迭代过程中保持不 体各维可分离问题划。图4展示了hybrid_func2函 变,Stom和Price在文献[5]中参数的设置如下: 数在不同CR情况下的候选个体分布情况,可以看 种群个数Np为5D到10D(D为个体的维度):缩 出随着CR的增加种群的多样性得到提高。 放因子F为0.5;交叉概率CR初值一般情况下设 150 置为0.1,快速收敛需求时设为0.9。然而, 100 Gamperle等在文献[49]中总结测试结果时得出 DE算法的表现严重依赖于控制参数的设置,控 制参数设置为:种群个数N。理想区间为3D~ 8D:缩放因子F有效初值为0.6;交叉概率CR初 值理想区间为0.3~0.9。Ronkkonen等[s0o]认为: 种群个数N。理想区间为2D~40D:缩放因子F 应在0.4~0.95(其中F为0.9时可实现搜索与开 发能力的妥协);对于可分离问题,交叉概率CR -150 -150-100 -50 050100150 理想区间为0.0~0.2,对于不可分离问题或者多 ” 峰问题,则设置为0.9~1。CoDE's1则采用每个 (a)CR=0.0 150 实验向量从3个预先设置的参数池中随机选取 的方式。ODE[s]采用正交交叉算子提高算法的 100 搜索能力,其参数设置为F=0.9,CR=0.9,Np= 50 D:DE-APCs3]采取自动参数配置的方法,即每个 个体的进化控制参数F和CR分别从两个预先设 置好的参数集合中随机选取。因此从上述结论 -50 表明,固定参数设置不可能适合所有问题,参数 应基于待优化问题而设。 -100 为了避免人工调节控制参数,其中一种方法就 -150 是随机设置,线性变化、概率分布以及特定启发式 150-100-50050100150 规则是3种常见的随机参数设置方法。Das等[4s) (b)CR=0.5 提出参数F两种设置的方法:随机设置和时变设 150r 置,其中随机方式中参数F被设置为0.5~1的随机 100 数,而时变方式中参数F在给定的时间间隔呈线性 降低:SaDE算法中参数F选取满足正态分布 N(0.5,0.3)。控制参数的随机设置通过增加搜索 的多样性提高算法的搜索能力。 另一种参数设置的方法为自适应调节方式,即 依据搜索过程的反馈8,]或者经过进化操作s5-s6 100 实现控制参数调节。结合历代个体和相对目标函 数值作为输入,Lu等s提出利用模糊逻辑控制器 -150-100-50 050100150 自适应调节算法控制参数的FADE算法;Brest (c)CR=1.0 等3]提出DE算法,其控制参数F和CR分别以概 图4不同交叉因子的候选个体分布 率为7,和72自适应在[0.1,1.0]和[0.0,1.0]范围 Fig.4 Distribution of the candiate individuals with 中指定:在JADE算法[3]中,依据历史成功参数信 differental CR 息,参数F产生满足柯西分布而参数CR满足正态
弱算法的开发能力;减小 F 可以增加算法的开发能 力,提高算法的收敛速度,但同时陷入早熟收敛的 风险。 交叉概率 CR 影响进化信息的调整权重:增 大 CR 可以提高种群多样性;减小 CR 有利于分析个 体各维可分离问题[33] 。 图 4 展示了 hybrid_func2 函 数在不同 CR 情况下的候选个体分布情况,可以看 出随着 CR 的增加种群的多样性得到提高。 (a)CR= 0.0 (b)CR= 0.5 (c)CR= 1.0 图 4 不同交叉因子的候选个体分布 Fig. 4 Distribution of the candiate individuals with differental CR 关于控制参数设置的研究主要集中在以下 3 种方式:固定、随机以及自适应。 在经典 DE 算法 中采用的是参数固定设置的方式,即参数在搜索 之前预先设置好并且在整个迭代过程中保持不 变,Storn 和 Price 在文献[ 5] 中参数的设置如下: 种群个数 NP 为 5D 到 10D(D 为个体的维度) ;缩 放因子 F 为0.5;交叉概率 CR 初值一般情况下设 置 为 0. 1, 快 速 收 敛 需 求 时 设 为 0. 9。 然 而, Gämperle 等在文献[ 49] 中总结测试结果时得出 DE 算法的表现严重依赖于控制参数的设置,控 制参数 设 置 为: 种 群 个 数 NP 理 想 区 间 为 3D ~ 8D;缩放因子 F 有效初值为0.6;交叉概率 CR 初 值理想区间为 0. 3 ~ 0. 9。 Rönkkönen 等[ 50] 认为: 种群个数 NP 理想区间为 2D ~ 40D;缩放因子 F 应在 0.4 ~ 0.95(其中 F 为 0.9 时可实现搜索与开 发能力的妥协) ;对于可分离问题,交叉概率 CR 理想区间为 0.0 ~ 0. 2,对于不可分离问题或者多 峰问题,则设置为 0. 9 ~ 1。 CoDE [ 51] 则采用每个 实验向量从 3 个预先设置的参数池中随机选取 的方式。 ODE [ 52] 采用正交交叉算子提高算法的 搜索能力,其参数设置为 F = 0. 9,CR = 0. 9,NP = D;DE⁃APC [ 53] 采取自动参数配置的方法,即每个 个体的进化控制参数 F 和 CR 分别从两个预先设 置好的参数集合中随机选取。 因此从上述结论 表明,固定参数设置不可能适合所有问题,参数 应基于待优化问题而设。 为了避免人工调节控制参数,其中一种方法就 是随机设置,线性变化、概率分布以及特定启发式 规则是 3 种常见的随机参数设置方法。 Das 等[45] 提出参数 F 两种设置的方法:随机设置和时变设 置,其中随机方式中参数 F 被设置为0.5~ 1 的随机 数,而时变方式中参数 F 在给定的时间间隔呈线性 降低; SaDE [37] 算法中参数 F 选取满足正态分布 N(0.5, 0.3)。 控制参数的随机设置通过增加搜索 的多样性提高算法的搜索能力。 另一种参数设置的方法为自适应调节方式,即 依据搜索过程的反馈[38,54] 或者经过进化操作[55-56] 实现控制参数调节。 结合历代个体和相对目标函 数值作为输入,Liu 等[54] 提出利用模糊逻辑控制器 自适 应 调 节 算 法 控 制 参 数 的 FADE 算 法; Brest 等[38]提出 jDE 算法,其控制参数 F 和 CR 分别以概 率为 τ1 和 τ2 自适应在[0.1,1.0]和[0.0,1.0]范围 中指定;在 JADE 算法[39] 中,依据历史成功参数信 息,参数 F 产生满足柯西分布而参数 CR 满足正态 第 4 期 丁青锋,等:差分进化算法综述 ·435·
·436· 智能系统学报 第12卷 分布;文献[57]提出的SHADE算法是基于不同成 CoDE],采用一组候选变异策略和控制参数的 功历史机制更新参数F和CR的改进型JADE: EPSDE70)、超适合多标准自适应的SMADE SaDE(]中参数CR设置满足基于以前成功CR值为 jDEsoot7]、小种群多变异策略的SPSRDEMMS)、 均值的正态分布:文献[58]依据相关成功率以一定 基于等级变异策略的Rank-DE4)]。 概率从一个参数集合中自适应选择:PVADE算 DE算法的操作除了上述变异和交叉两种操作 法[9提出通过各维差分度量计算缩放因子向量代 算子之外还包括初始化以及选择操作。其中初始 替单个缩放因子。 化方式有随机初始化以及反学习初始化]:选择操 2)差分策略 作是依据评价标准解决个体丢弃,从而维持种群多 DE算法主要特性就是差分策略,可以描述为 样性信息的问题。文献[46]为了平衡搜索能力与 DE/x/y/z,其中参数x表示参与变异的向量,可以 开发能力,提出以进化代数为函数的选择策略,但 是随机向量(rand)、当前种群的最优向量(best)或 该选择策略易收到最大进化代数以及待优化问题 者是当前向量本身(current);参数y表示参与变异 的复杂性影响:文献[76]提出与当前个体进化时间 的差分向量数目:参数z表示交叉的模式,如二项式 以及其更新次数相关的选择策略,保证在进化初期 交叉、指数交叉以及正交交叉。其中DE/and/1/ 适应度较差的个体也有一定的生存概率,从而有利 bin和DE/best/2/bin是目前应用最为广泛的差分 于保持种群的多样性,而在进化后期个体的生存则 策略,其中第1种策略有利于保持种群多样性,第2 依赖于其自身的适应度,从而加速种群的收敛。 种策略有利于提高算法的收敛速度。此外Fan等还 3)种群结构 提出一种三角形差分策略。 具有启发式和随机特性的进化算法已被证明 近几年来,研究者发展了大量不同的变异策 是解决实际应用中复杂优化问题的有效工具。但 略[35,。其中一部分具有良好的搜索能力的策略, 是随着问题规模以及复杂性的日益增大,搜索的空 适合于全局搜索:另一部分具有良好的开发能力的 间、数量庞大的局部最优以及适应性评估计算的成 策略适合于局部搜索)。例如,相对于单个差分向 本将变得非常高,因此传统的进化算法无法在合理 量的策略(如,DE/rand/I),具有两个差分向量(如, 的时间里得出满意的结果。分布式进化算法(dEA) DE/rand/2)的变异策略可以提高种群的多样性:如 通过将机制种群分配到分布式结构中,利用分而治 采用最佳向量作为当前基向量的变异策略(如,DE/ 之机制的分布式协同进化解决高维问题。此外,其 best/1 and DE/current-to-best/I)则可以增强算法的 分布式结构非常有利于保持种群多样性,从而有效 开发能力从而加快收敛的速度。 避免陷入局部最优,同时有利于实现多目标搜索。 然而,为了提高算法的稳健性、搜索能力和开 当分布式种群结构中多个种群独立进行进化搜索 发能力必须同时考虑进化策略。因此,一类采用单 时,即使单个种群出现多样性丧失,由于种群间存 一操作变异策略结合搜索特性的改进DE算法被提 在的差异性,通过种群间的信息交换与共享,依然 出,Epitropakis等[6]提出将搜索与开发变异操作算 可以保证整个算法的进化。分布式种群结构分为 子线性混合的方法平衡两者冲突的BDE算法,Das 主从模型[)、岛屿模型(又称粗颗粒模型)[】、元胞 等[]提出将全局与局部变异个体结合组成进化代 模型(又称细颗粒模型)[列]、等级模型]以及水池 数相关比重变异个体的DEGL,由Zhang等]提出 模型81]等,如图5所示,进化任务可在种群级、个体 利用一个外部的备份结合利用历史信息的DE/ 级甚至操作级并行执行。 current-.to-pbest/I差分策略指导个体搜索JADE, 主种群 Tang等[6]结合3个不同的差分向量和DE/current-. to-pbest,/1差分策略以提高种群的多样性而提出 PIDE,pitropakis等[64]提出选择试验个体的邻居参 与变异操作的ProDE,最佳随机变异策略的 BoRDE!6],三角变异策略的TDEI1。另一类采用 多变异算子集合不同搜索特性的改进DE算法,如: 从种群 差分策略自适应的SaDE6],教-学自适应的 TLBSaDE(6],结合试验向量代数策略和控制参数的 (a)主从模型
分布;文献[57]提出的 SHADE 算法是基于不同成 功历史机制更新参数 F 和 CR 的改进型 JADE; SaDE [37]中参数 CR 设置满足基于以前成功 CR 值为 均值的正态分布;文献[58]依据相关成功率以一定 概率从一个参数集合中自适应选择; PVADE 算 法[59]提出通过各维差分度量计算缩放因子向量代 替单个缩放因子。 2)差分策略 DE 算法主要特性就是差分策略,可以描述为 DE / x / y / z,其中参数 x 表示参与变异的向量,可以 是随机向量( rand)、当前种群的最优向量( best) 或 者是当前向量本身(current);参数 y 表示参与变异 的差分向量数目;参数 z 表示交叉的模式,如二项式 交叉、指数交叉以及正交交叉。 其中 DE / rand / 1 / bin 和 DE / best / 2 / bin 是目前应用最为广泛的差分 策略,其中第 1 种策略有利于保持种群多样性,第 2 种策略有利于提高算法的收敛速度。 此外 Fan 等还 提出一种三角形差分策略。 近几年来,研究者发展了大量不同的变异策 略[35,60] 。 其中一部分具有良好的搜索能力的策略, 适合于全局搜索;另一部分具有良好的开发能力的 策略适合于局部搜索[5] 。 例如,相对于单个差分向 量的策略(如,DE / rand / 1),具有两个差分向量(如, DE / rand / 2)的变异策略可以提高种群的多样性;如 采用最佳向量作为当前基向量的变异策略(如,DE / best / 1 and DE / current⁃to⁃best / 1)则可以增强算法的 开发能力从而加快收敛的速度。 然而,为了提高算法的稳健性、搜索能力和开 发能力必须同时考虑进化策略。 因此,一类采用单 一操作变异策略结合搜索特性的改进 DE 算法被提 出,Epitropakis 等[61] 提出将搜索与开发变异操作算 子线性混合的方法平衡两者冲突的 BDE 算法,Das 等[62]提出将全局与局部变异个体结合组成进化代 数相关比重变异个体的 DEGL,由 Zhang 等[39] 提出 利用一个外部的备份结合利用历史信息的 DE / current⁃to⁃pbest / 1 差分策略指导个体搜索 JADE, Tang 等[63]结合 3 个不同的差分向量和 DE / current⁃ to⁃pbest / 1 差分策略以提高种群的多样性而提出 PIDE,Epitropakis 等[64]提出选择试验个体的邻居参 与 变 异 操 作 的 ProDE, 最 佳 随 机 变 异 策 略 的 BoRDE [65] ,三角变异策略的 TDE [66] 。 另一类采用 多变异算子集合不同搜索特性的改进 DE 算法,如: 差分 策 略 自 适 应 的 SaDE [67] , 教 - 学 自 适 应 的 TLBSaDE [68] ,结合试验向量代数策略和控制参数的 CoDE [69] ,采用一组候选变异策略和控制参数的 EPSDE [70] 、超 适 合 多 标 准 自 适 应 的 SMADE [71] 、 jDEsoo [72] 、小种群多变异策略的 SPSRDEMMS [73] 、 基于等级变异策略的 Rank⁃DE [74] 。 DE 算法的操作除了上述变异和交叉两种操作 算子之外还包括初始化以及选择操作。 其中初始 化方式有随机初始化以及反学习初始化[75] ;选择操 作是依据评价标准解决个体丢弃,从而维持种群多 样性信息的问题。 文献[46] 为了平衡搜索能力与 开发能力,提出以进化代数为函数的选择策略,但 该选择策略易收到最大进化代数以及待优化问题 的复杂性影响;文献[76]提出与当前个体进化时间 以及其更新次数相关的选择策略,保证在进化初期 适应度较差的个体也有一定的生存概率,从而有利 于保持种群的多样性,而在进化后期个体的生存则 依赖于其自身的适应度,从而加速种群的收敛。 3)种群结构 具有启发式和随机特性的进化算法已被证明 是解决实际应用中复杂优化问题的有效工具。 但 是随着问题规模以及复杂性的日益增大,搜索的空 间、数量庞大的局部最优以及适应性评估计算的成 本将变得非常高,因此传统的进化算法无法在合理 的时间里得出满意的结果。 分布式进化算法(dEA) 通过将机制种群分配到分布式结构中,利用分而治 之机制的分布式协同进化解决高维问题。 此外,其 分布式结构非常有利于保持种群多样性,从而有效 避免陷入局部最优,同时有利于实现多目标搜索。 当分布式种群结构中多个种群独立进行进化搜索 时,即使单个种群出现多样性丧失,由于种群间存 在的差异性,通过种群间的信息交换与共享,依然 可以保证整个算法的进化。 分布式种群结构分为 主从模型[77] 、岛屿模型(又称粗颗粒模型) [78] 、元胞 模型(又称细颗粒模型) [79] 、等级模型[80] 以及水池 模型[81]等,如图 5 所示,进化任务可在种群级、个体 级甚至操作级并行执行。 (a)主从模型 ·436· 智 能 系 统 学 报 第 12 卷
第4期 丁青锋,等:差分进化算法综述 ·437· 岛结构 中超复杂度的蛋白质结构预测问题(protein 迁徒 structure prediction,PSP),Kalegari等[)提出基于集 群信息传输接口的并行主从结构差分进化算法,利 用Toy模型重新表述二维/三维的蛋白质结构。 Kushida等[4]通过将进化算法种群分割成大小不等 的子种群(岛屿)且分配不同的控制参数,从而实现 子种群的并行进化,同时通过岛屿间的个体迁徙保 持种群的多样性;文献[85]提出基于“随机交配迁 (b)岛屿模型 徙”交换岛屿间信息和“往返行程”更新相应岛屿两 种技术的IbDE算法。Aba等[]为了平衡算法搜 索能力与开发能力之间的冲突,以种群邻居比例作 为参数建立一种自适应动态元胞模型,同时为不同 的优化问题设计相应的元胞网络;Dorronsoro等[别 提出基于元胞个体质量自我管理的邻居结构以及 按照收敛速度设置最佳的种群结构:文献[88]利用 元胞进化特性与蚁群优化解决几何约束优化问题: Lu等[s]提出基于元胞进化规则的元胞遗传算法, 并且给出了元胞进化规则选择标准从而保持种群 (c)元胞模型 的多样性;Nomant]和Dorronsoro[9)]提出线型和紧 岛结构 密型元胞邻居结构的差分进化算法;Noroozi等[] 迁徙 提出CellularDE算法解决动态优化问题,该算法将 搜索空间分布到元胞网格中但是没有考虑元胞自 身的进化。文献[93]中,等级模型算法中的种群被 分成若干个子种群,它们由各自进化并在特定时刻 进行相互通信,所提出的岛屿-主从式等级算法的 速度是线性的:Folino等[]提出一种分布遗传规划 O 算法,其种群由多个独立岛屿组成,每个岛屿种群 采用独立的元胞遗传规划算法:Herrera等[]指出 (d)等级模型(岛屿-元胞)》 等级模型的关键问题是发展了全局和局部两种种 群迁徙方式,这是基本分布式进化算法与等级分布 分段1L分段2 分段p 4 进化算法的区别:另外,这种等级模型的优点还包 括提高每个节点的效率、更多样化合作以及同质 种群池 异质的良好结合等。文献[96]提出一种分布式存 储池结构进化算法,处理器将个体从存储池中提取 执行进化操作后再放回到池中,从而克服传统分布 处理器1 处理器2 处理器p) 进化算法松散耦合、不可靠的缺陷。 4)与其他最优化算法混合 与其他最优化算法混合主要有以下3种方式: (e)水池模型 将其他最优化算法的优化算子嵌入DE算法的差分 图5典型分布式种群结构 策略以改进DE算法:将DE算法的差分策略嵌入其 Fig.5 Typical structure of distributed population 他最优化算法的优化算子以改进其他最优化算法: 文献[82]提出基于异步主从模型的多目标优 迭代过程分别由差分进化算法与其他最优化算法 化算法AMS-DEMO,用以解决同质/异质并行计算 完成,所获得种群多样性的优化算法。 机体系结构的时间密度问题:为了解决生物信息学 其中,文献[41-42]分别提出利用粒子群算子
(b)岛屿模型 (c)元胞模型 (d)等级模型(岛屿-元胞) (e)水池模型 图 5 典型分布式种群结构 Fig.5 Typical structure of distributed population 文献[82]提出基于异步主从模型的多目标优 化算法 AMS⁃DEMO,用以解决同质/ 异质并行计算 机体系结构的时间密度问题;为了解决生物信息学 中超 复 杂 度 的 蛋 白 质 结 构 预 测 问 题 ( protein structure prediction,PSP),Kalegari 等[83]提出基于集 群信息传输接口的并行主从结构差分进化算法,利 用 Toy 模型重新表述二维/ 三维的蛋白质结构。 Kushida 等[84]通过将进化算法种群分割成大小不等 的子种群(岛屿)且分配不同的控制参数,从而实现 子种群的并行进化,同时通过岛屿间的个体迁徙保 持种群的多样性;文献[85]提出基于“随机交配迁 徙”交换岛屿间信息和“往返行程”更新相应岛屿两 种技术的 IbDE 算法。 Alba 等[86] 为了平衡算法搜 索能力与开发能力之间的冲突,以种群邻居比例作 为参数建立一种自适应动态元胞模型,同时为不同 的优化问题设计相应的元胞网络;Dorronsoro 等[87] 提出基于元胞个体质量自我管理的邻居结构以及 按照收敛速度设置最佳的种群结构;文献[88]利用 元胞进化特性与蚁群优化解决几何约束优化问题; Lu 等[89] 提出基于元胞进化规则的元胞遗传算法, 并且给出了元胞进化规则选择标准从而保持种群 的多样性;Noman [90] 和 Dorronsoro [91] 提出线型和紧 密型元胞邻居结构的差分进化算法;Noroozi 等[92] 提出 CellularDE 算法解决动态优化问题,该算法将 搜索空间分布到元胞网格中但是没有考虑元胞自 身的进化。 文献[93]中,等级模型算法中的种群被 分成若干个子种群,它们由各自进化并在特定时刻 进行相互通信,所提出的岛屿-主从式等级算法的 速度是线性的;Folino 等[94] 提出一种分布遗传规划 算法,其种群由多个独立岛屿组成,每个岛屿种群 采用独立的元胞遗传规划算法;Herrera 等[95] 指出 等级模型的关键问题是发展了全局和局部两种种 群迁徙方式,这是基本分布式进化算法与等级分布 进化算法的区别;另外,这种等级模型的优点还包 括提高每个节点的效率、更多样化合作以及同质/ 异质的良好结合等。 文献[96] 提出一种分布式存 储池结构进化算法,处理器将个体从存储池中提取 执行进化操作后再放回到池中,从而克服传统分布 进化算法松散耦合、不可靠的缺陷。 4)与其他最优化算法混合 与其他最优化算法混合主要有以下 3 种方式: 将其他最优化算法的优化算子嵌入 DE 算法的差分 策略以改进 DE 算法;将 DE 算法的差分策略嵌入其 他最优化算法的优化算子以改进其他最优化算法; 迭代过程分别由差分进化算法与其他最优化算法 完成,所获得种群多样性的优化算法。 其中,文献[41-42]分别提出利用粒子群算子 第 4 期 丁青锋,等:差分进化算法综述 ·437·
·438. 智能系统学报 第12卷 与人工蚁群算子改进DE算法:邓泽喜等提出一 intelligence,2010,33(1/2):61-106 种基于小生境的混沌变异DE算法,以提高算法在 [5]STORN R,PRICE K.Differential evolution:a simple and 搜索初始阶段的种群多样性。詹腾等]针对在多 efficient heuristic for global optimization over continuous 目标优化算法存在收敛性不佳以及解分布性差的 spaces[J ]Journal global optimization,1997,11 (4): 341-359. 问题,通过多策略差分协同进化选择算子,提出基 [6]GAO Z Q,PAN Z B,GAO J H.A new highly efficient dif- 于多策略差分进化的多目标遗传算法。为解决多 ferential evolution scheme and its application to waveform 目标柔性车间工作调度问题,Zhag等[]提出免疫 inversion[J].IEEE geoscience and remote sensing letters, 克隆DE算法,利用DE算法和免疫克隆算法分别进 2014,11(10):1702-1706. 行种群进化,通过两种群之间的个体迁徙平衡算法 [7]ZHAN C J,SITU W C,YEUNG L F,et al.A parameter esti- 搜索能力和收敛速度。 mation method for biological systems modelled by ode/dde models using spline approximation and differential evolution 4总结与展望 algorithm[J].IEEE/ACM transactions on computational 目前,DE算法已经广泛应用在求解各类静态 biology and bioinformatics,2014,11(6):1066-1076. 优化问题上。然而,DE算法也存在早熟收敛和搜 [8]LEI H,LI L,WU C H.Evolutionary model selection and parameter estimation for protein-protein interaction network 索停滞等缺陷,限制了其优化能力和应用范围,特 based on differential evolution algorithm[J].IEEE/ACM 别是应用于求解动态优化问题,迫切需要加以研究 transactions on computational biology and bioinformatics, 和改进。有研究者利用混沌理论、协同量子等改善 2015.12(3):622-631. DE算法的性能。DE算法从最初的静态单目标优 [9]SHARMA N,ANPALAGAN A.Composite differential evo- 化发展到现在的动态多目标优化,已经有了长足的 lution aided channel allocation in OFDMA systems with pro- 进步,但面对不断涌现的新的优化问题,仍然需要 portional rate constraints[J].Journal of communications and 不断地进行方法、策略等创新。下面列出几个具体 networks,2014.16(5):523-533 待研究的问题以供参考: [10]DING Y,JIAO Y C.ZHANG L,et al.Solving port selec- 1)从理论上,DE算法的性能主要是由其控制 tion problem in multiple beam antenna satellite communi- 参数、种群进化策略等因素决定的,如何保证其一 cation system by using differential evolution algorithm[J]. IEEE transactions on antennas and propagation,2014,62 定代数收敛程度一直是进化算法非常重要的研究 (10):5357-5361. 问题。考虑如何将现有凸优化方法与进化算法结 [11]KRANJCIC D,STUMBERGER G.Differential evolution- 合,提出针对性的分阶段优化策略。 based identification of the nonlinear Kaplan turbine model 2)现阶段对进化算法的研究主要针对其控制 [J].IEEE Transactions on energy conversion,2014,29 参数的调制以及交叉、变异策略的设计等,忽视了 (1):178-187. 快速变化环境下优化结果实时性的问题。现有算 [12]YAHIA H,LIOUANE N,DHIFAOUI R.Differential evo- 法主要考虑的是对种群规模、进化个体淘汰机制以 lution method-based output power optimization of switched 及邻居选择等方面的控制。在以后的研究中还可 reluctance generator for wind turbine applications[].IET 以考虑针对动态多目标优化问题,如何适应快速变 renewable power generation,2014,8(7):795-806. [13]MARCIC T,STUMBERGER B,STUMBERGER G.Differ- 化环境以及种群优化方向的快速预测等。 ential-evolution-based parameter identification of a line- 参考文献: start IPM synchronous motor[J].IEEE transactions on in- dustrial electronics,2014,61(11):5921-5929. [1]HOLLAND J H.Adaptation in natural and artificial systems [14]BASETTI V,CHANDEL A K.Hybrid power system state [M].MA:MIT press,1975. estimation using Taguchi differential evolution algorithm [2]FOGEL L J.Artificial intelligence through simulated evolution [J].IET science,measurement and technology,2015,9 [M].New York:John Wiley,1966. (4):449-466. [3]RECHENBERG I.Evolutions strategie:optimierung texhnischer [15]XUE Y,ZHUANG Y,NI T Q,et al.Self-adaptive leaming systeme nach prinzipien der biologischen evolution M]. based discrete differential evolution algorithm for solving Stuttgart,Gemany:Frogmann Holzboog,1973. CJWTA problem[J].Joumal of systems engineering and elec- 4]FERRANTE N,VILLE T.Recent advances in differential e- tronics,2014.25(1):59-68. volution:a survey and experimental analysis[J].Artificial 16]ZHONG Y F,ZHAO L.ZHANG L P.An adaptive differential
与人工蚁群算子改进 DE 算法;邓泽喜等[97] 提出一 种基于小生境的混沌变异 DE 算法,以提高算法在 搜索初始阶段的种群多样性。 詹腾等[98] 针对在多 目标优化算法存在收敛性不佳以及解分布性差的 问题,通过多策略差分协同进化选择算子,提出基 于多策略差分进化的多目标遗传算法。 为解决多 目标柔性车间工作调度问题,Zhang 等[99] 提出免疫 克隆 DE 算法,利用 DE 算法和免疫克隆算法分别进 行种群进化,通过两种群之间的个体迁徙平衡算法 搜索能力和收敛速度。 4 总结与展望 目前,DE 算法已经广泛应用在求解各类静态 优化问题上。 然而,DE 算法也存在早熟收敛和搜 索停滞等缺陷,限制了其优化能力和应用范围,特 别是应用于求解动态优化问题,迫切需要加以研究 和改进。 有研究者利用混沌理论、协同量子等改善 DE 算法的性能。 DE 算法从最初的静态单目标优 化发展到现在的动态多目标优化,已经有了长足的 进步,但面对不断涌现的新的优化问题,仍然需要 不断地进行方法、策略等创新。 下面列出几个具体 待研究的问题以供参考: 1)从理论上,DE 算法的性能主要是由其控制 参数、种群进化策略等因素决定的,如何保证其一 定代数收敛程度一直是进化算法非常重要的研究 问题。 考虑如何将现有凸优化方法与进化算法结 合,提出针对性的分阶段优化策略。 2)现阶段对进化算法的研究主要针对其控制 参数的调制以及交叉、变异策略的设计等,忽视了 快速变化环境下优化结果实时性的问题。 现有算 法主要考虑的是对种群规模、进化个体淘汰机制以 及邻居选择等方面的控制。 在以后的研究中还可 以考虑针对动态多目标优化问题,如何适应快速变 化环境以及种群优化方向的快速预测等。 参考文献: [1]HOLLAND J H. Adaptation in natural and artificial systems [M]. MA: MIT press, 1975. [2]FOGEL L J. Artificial intelligence through simulated evolution [M]. New York: John Wiley, 1966. [3] RECHENBERG I. Evolutions strategie: optimierung texhnischer systeme nach prinzipien der biologischen evolution [ M ]. Stuttgart, Gemany: Frogmann Holzboog, 1973. [4]FERRANTE N, VILLE T. Recent advances in differential e⁃ volution: a survey and experimental analysis[ J]. Artificial intelligence, 2010, 33(1 / 2): 61-106. [5]STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[ J ]. Journal global optimization, 1997, 11 ( 4 ): 341-359. [6]GAO Z Q, PAN Z B, GAO J H. A new highly efficient dif⁃ ferential evolution scheme and its application to waveform inversion[ J]. IEEE geoscience and remote sensing letters, 2014, 11(10): 1702-1706. [7]ZHAN C J, SITU W C, YEUNG L F, et al. A parameter esti⁃ mation method for biological systems modelled by ode / dde models using spline approximation and differential evolution algorithm[J]. IEEE/ ACM transactions on computational biology and bioinformatics, 2014, 11(6): 1066-1076. [8] LEI H, LI L, WU C H. Evolutionary model selection and parameter estimation for protein⁃protein interaction network based on differential evolution algorithm [ J]. IEEE/ ACM transactions on computational biology and bioinformatics, 2015, 12(3): 622-631. [9] SHARMA N, ANPALAGAN A. Composite differential evo⁃ lution aided channel allocation in OFDMA systems with pro⁃ portional rate constraints[J]. Journal of communications and networks, 2014, 16(5): 523-533. [10]DING Y, JIAO Y C, ZHANG L, et al. Solving port selec⁃ tion problem in multiple beam antenna satellite communi⁃ cation system by using differential evolution algorithm[J]. IEEE transactions on antennas and propagation, 2014, 62 (10): 5357-5361. [11] KRANJCIC D, STUMBERGER G. Differential evolution⁃ based identification of the nonlinear Kaplan turbine model [J]. IEEE Transactions on energy conversion, 2014, 29 (1): 178-187. [12]YAHIA H, LIOUANE N, DHIFAOUI R. Differential evo⁃ lution method⁃based output power optimization of switched reluctance generator for wind turbine applications[ J]. IET renewable power generation, 2014, 8(7): 795-806. [13]MARCIC T, STUMBERGER B, STUMBERGER G. Differ⁃ ential⁃evolution⁃based parameter identification of a line⁃ start IPM synchronous motor[J]. IEEE transactions on in⁃ dustrial electronics, 2014, 61(11): 5921-5929. [14]BASETTI V, CHANDEL A K. Hybrid power system state estimation using Taguchi differential evolution algorithm [J]. IET science, measurement and technology, 2015, 9 (4): 449-466. [15]XUE Y, ZHUANG Y, NI T Q, et al. Self⁃adaptive learning based discrete differential evolution algorithm for solving CJWTA problem[J]. Journal of systems engineering and elec⁃ tronics, 2014, 25(1): 59-68. [16]ZHONG Y F, ZHAO L, ZHANG L P. An adaptive differential ·438· 智 能 系 统 学 报 第 12 卷
第4期 丁青锋,等:差分进化算法综述 ·439. evolution endmember extraction algorithm for hyperspectral proach of differential evolution optimization applied to elec- remote sensing imagery[J].IEEE geoscience and remote tromagnetic problems[J].IEEE transactions on magnetics, sensing letters,2014,11(6):1061-1065. 2014,50(2):625-628. [17]TANG L X.ZHAO Y,LIU J Y.An improved differential [27]孟红云,张小华,刘三阳.用于约束多目标优化问题的 evolution algorithm for practical dynamic scheduling in 双群体差分进化算法[J].计算机学报,2008,31(2): steelmaking-continuous casting production[].IEEE trans- 228-235 actions on evolutionary computation,2014,18 (2): MENG Hongyun,ZHANG Xiaohua,LIU Sanyang.A dif- 209-225. ferential evolution based on double populations for con- [18]MANGOUD M A,ELRAGAL H M,ALASHARA M T. strained multi-objective optimization problem[].Chinese Design of time modulated concentric circular and joumal of computer,2008,31(2):228-235. concentric hexagonal antenna array using hybrid enhanced [28]毕晓君,刘国安.基于云差分进化算法的约束多目标优 particle swarm optimisation and differential evolution algo- 化实现[J].哈尔滨工程大学学报,2012,33(8): rithm[J].IET microwaves,antennas and propagation, 1022-1031. 2014,8(9):657-665. BI Xiaojun,LIU Guoan.A cloud differential evolutionary [19]CUKOVIC J P,KLOPCIC B,PETRUN M,et al.Optimi- algorithm for constrained multi-objective optimization[] zation of resistance spot welding transformer windings using Journal of Harbin engineering university,2012,33(8): analytical successive approximation and differential 1022-1031. evolution[J ]IEEE transactions on magnetics,2014,50 [29]郭俊,桂卫华,阳春华.改进差分进化算法在铝电解多 (4):1-4. 目标优化中的应用[J刀].中南大学学报:自然科学版, [20]BAATAR N,PHAM M T,KOH C S.Multiguiders and 2012,43(1):184-188. non-dominate ranking differential evolution algorithm for GUO Jun,GUI Weihua,YANG Chunhua.An improved multiobjective global optimization of electromagnetic prob- hybrid differential evolution algorithm used for multi-objec- lems[J].IEEE transactions on magnetics,2013,49(5): tive optimization of aluminum electrolysis[J].Journal of 2105-2108. central south university,2012,43(1):184-188. [21]RUBIO L A,GONZALEZ-ALVAREZ D L,VEGA-RODRIGUEZ [30]严细辉,蔡伯根,宁滨,等.基于差分进化的高速列车运 M A,et al.MO-ABC/DE-multiobjective artificial bee 行操纵的多目标优化研究[J].铁道学报,2013,35 colony with differential evolution for unconstrained multiob- (9):65-71. jective optimization[C]//Proceedings of the IEEE 13th In- YAN Xihui,CAI Bogen,NING Bin,et al.Research on ternational Symposium on Computational Intelligence and multi-objective high-speed train operation optimization Informatics.Budapest,Hungary,2012:157-162. based on differential evolution[J].Journal of the China [22]COELHO L D S.MARIANI V C.FERREIRA D L.et al. railway society,2013,35(9):65-71. Novel gamma differential evolution approach for multiobjec- [31]YANG M,LI C H,CAI Z H,et al.Differential evolution tive transformer design optimization[J].IEEE transactions with auto-enhanced population diversity[J].IEEE transac- 0 n magnetics,2013,49(5):2121-2124. tions on cybernetics,2015,45(2):302-315. [23]WU L H,WANG Y N,YUAN X F,et al.Multiobjective [32]MUSRRAT A,MILLIE P,SINGH V P.An improved dif- optimization of HEV fuel economy and emissions using the ferential evolution algorithm for real parameter optimization self-adaptive differential evolution algorithm J].IEEE problems[J].International journal of recent trends in engi- transactions on vehicular technology,2011,60 (6): neering,2009,1(5):63-65. 2458-2470. [33]PRICE K,STORE R,LAMPINCN J.Differential evolution-a [24]CHENG M Y,TRAN D H.Two-phase differential evolution practical approach to global optimization M].New York: for the multiobjective optimization of time-cost tradeoffs in re- Springer,2005. source-constrained construction projects[.IEEE transactions [34]ZAHARIE D.Critical values for the control parameters of on engineering management,2014,61(3):450-461. differential evolution algorithm[C]//Proceedings of 8th In- [25]SIKDAR U K,EKBAL A,SAHA S.Differential evolution ternational Mendel Conference on Soft Computing.Brno, based multiobjective optimization for biomedical entity Czech Republic,2002:62-67 extraction C//Proceeding of the International Conference [35]DAS S,SUGANTHAN P N.Differential evolution:a on Advances in Computing,Communications and Informat- survey of the state-of-the-art[]].IEEE transactions on evo- ics.New Delhi,India,2014:1039-1044. lutionary computation,2011,15(1):4-31. [26]CARAVGGI T G,LEBENSZTAJN L.A multiobjective ap- [36]TANG L.DONG Y.LIU J.Differential evolution with an
evolution endmember extraction algorithm for hyperspectral remote sensing imagery[J]. IEEE geoscience and remote sensing letters, 2014, 11(6): 1061-1065. [17]TANG L X, ZHAO Y, LIU J Y. An improved differential evolution algorithm for practical dynamic scheduling in steelmaking⁃continuous casting production[J]. IEEE trans⁃ actions on evolutionary computation, 2014, 18 ( 2 ): 209-225. [18] MANGOUD M A, ELRAGAL H M, ALASHARA M T. Design of time modulated concentric circular and concentric hexagonal antenna array using hybrid enhanced particle swarm optimisation and differential evolution algo⁃ rithm [ J ]. IET microwaves, antennas and propagation, 2014, 8(9): 657-665. [19]CUKOVIC J P, KLOPCIC B, PETRUN M, et al. Optimi⁃ zation of resistance spot welding transformer windings using analytical successive approximation and differential evolution[ J]. IEEE transactions on magnetics, 2014, 50 (4): 1-4. [20] BAATAR N, PHAM M T, KOH C S. Multiguiders and non⁃dominate ranking differential evolution algorithm for multiobjective global optimization of electromagnetic prob⁃ lems[J]. IEEE transactions on magnetics, 2013, 49(5): 2105-2108. [21]RUBIO L A, GONZALEZ⁃ALVAREZ D L, VEGA⁃RODRIGUEZ M A, et al. MO⁃ABC/ DE⁃multiobjective artificial bee colony with differential evolution for unconstrained multiob⁃ jective optimization[C] / / Proceedings of the IEEE 13th In⁃ ternational Symposium on Computational Intelligence and Informatics. Budapest, Hungary, 2012: 157-162. [22]COELHO L D S, MARIANI V C, FERREIRA D L, et al. Novel gamma differential evolution approach for multiobjec⁃ tive transformer design optimization[ J]. IEEE transactions on magnetics, 2013, 49(5): 2121-2124. [23]WU L H, WANG Y N, YUAN X F, et al. Multiobjective optimization of HEV fuel economy and emissions using the self⁃adaptive differential evolution algorithm [ J ]. IEEE transactions on vehicular technology, 2011, 60 ( 6 ): 2458-2470. [24] CHENG M Y, TRAN D H. Two⁃phase differential evolution for the multiobjective optimization of time⁃cost tradeoffs in re⁃ source⁃constrained construction projects[J]. IEEE transactions on engineering management, 2014, 61(3): 450-461. [25]SIKDAR U K, EKBAL A, SAHA S. Differential evolution based multiobjective optimization for biomedical entity extraction[C] / / Proceeding of the International Conference on Advances in Computing, Communications and Informat⁃ ics. New Delhi, India, 2014:1039-1044. [26]CARAVGGI T G, LEBENSZTAJN L. A multiobjective ap⁃ proach of differential evolution optimization applied to elec⁃ tromagnetic problems[J]. IEEE transactions on magnetics, 2014, 50(2): 625-628. [27]孟红云,张小华,刘三阳. 用于约束多目标优化问题的 双群体差分进化算法[ J].计算机学报, 2008, 31(2): 228-235. MENG Hongyun, ZHANG Xiaohua, LIU Sanyang. A dif⁃ ferential evolution based on double populations for con⁃ strained multi⁃objective optimization problem[ J]. Chinese journal of computer, 2008, 31(2): 228-235. [28]毕晓君,刘国安. 基于云差分进化算法的约束多目标优 化实现 [ J]. 哈尔滨工程大学学报, 2012, 33 ( 8): 1022-1031. BI Xiaojun, LIU Guoan. A cloud differential evolutionary algorithm for constrained multi⁃objective optimization [ J]. Journal of Harbin engineering university, 2012, 33 ( 8): 1022-1031. [29]郭俊,桂卫华,阳春华. 改进差分进化算法在铝电解多 目标优化中的应用[ J]. 中南大学学报:自然科学版, 2012, 43(1): 184-188. GUO Jun, GUI Weihua, YANG Chunhua. An improved hybrid differential evolution algorithm used for multi⁃objec⁃ tive optimization of aluminum electrolysis [ J]. Journal of central south university, 2012, 43(1): 184-188. [30]严细辉,蔡伯根,宁滨,等. 基于差分进化的高速列车运 行操纵的多目标优化研究[ J]. 铁道学报, 2013, 35 (9): 65-71. YAN Xihui, CAI Bogen, NING Bin, et al. Research on multi⁃objective high⁃speed train operation optimization based on differential evolution [ J]. Journal of the China railway society, 2013, 35(9): 65-71. [31]YANG M, LI C H, CAI Z H, et al. Differential evolution with auto⁃enhanced population diversity[J]. IEEE transac⁃ tions on cybernetics, 2015, 45(2): 302-315. [32]MUSRRAT A, MILLIE P, SINGH V P. An improved dif⁃ ferential evolution algorithm for real parameter optimization problems[J]. International journal of recent trends in engi⁃ neering, 2009, 1(5): 63-65. [33]PRICE K, STORE R, LAMPINCN J. Differential evolution⁃a practical approach to global optimization [ M]. New York: Springer, 2005. [34] ZAHARIE D. Critical values for the control parameters of differential evolution algorithm[C] / / Proceedings of 8th In⁃ ternational Mendel Conference on Soft Computing. Brno, Czech Republic, 2002: 62-67. [35] DAS S, SUGANTHAN P N. Differential evolution: a survey of the state⁃of⁃the⁃art[J]. IEEE transactions on evo⁃ lutionary computation, 2011, 15(1): 4-31. [36]TANG L, DONG Y, LIU J. Differential evolution with an 第 4 期 丁青锋,等:差分进化算法综述 ·439·
·440· 智能系统学报 第12卷 individual-dependent mechanism[J].IEEE transactions on 16-19. evolutionary computation,2015,19(4):560-574. [48]陈俊风,吴铁军.群体智能算法搜索策略的性质及对停 [37]QIN A K,HUANG V L,SUGANTHAN P N.Differential 滯现象的影响[J].系统工程理论与实践,2013,06: evolution algorithm with strategy adaptation for global nu- 1587-1595. merical optimization[]].IEEE transactions on evolutionary CHEN Junfeng,WU Tiejun.The property of search strate- computation,2009,13(2):398-417. gies of swarm intelligent algorithms and their influences on [38]BREST J,GREINER S,BOSKOVIC B,et al.Self- stagnation[J.Systems engineering-theory and practice, adapting control parameters in differential evolution:a 2013,06:1587-1595. comparative study on numerical benchmark problems[J]. [49]GAMPERLE R,MULLER S D,KOUMOUTSAKOS P.A IEEE transactions on evolutionary computation,2006,10 parameter study for differential evolution[M]//Advances (6):646-657. in Intelligent Systems,Fuzzy Systems,Evolutionary Com- [39]ZHANG J,SANDERSON A C.JADE:adaptive differential e- putation,A.Grmela and N.E.Mastorakis,Eds. volution with optional external archive[J].IEEE transactions Interlaken,Switzerland:WSEAS Press,2002:293-298. on evolutionary computation,2009,13(5):945-958. [50]RONKKONEN J,KUKKONEN S,PRICE K V.Real-pa- [40]AHADZADEH B.MENHAJ M B.A modified differential rameter optimization with differential evolution[C]//Pro- evolution algorithm based on a new mutation strategy and ceedings of the IEEE Congress Evolutionary Computation. chaos local search for optimization problems[C]//Pro- Edinburgh,UK,2005,1:506-513. ceedings of the 4th International Conference on Computer 51]WANG Y,CAI Z,ZHANG Q.Differential evolution with com- and Knowledge Engineering.Mashhad,Iran,2014: posite trial vector generation strategies and control 468-473. parameters[J].IEEE transactions evolutionary computation, [41]SAHU B K,PATI S,PANDA S.Hybrid differential evolu- 2011,15(1):55-66. tion particle swarm optimisation optimised fuzzy [52 WANG Y,CAI Z,ZHANG Q.Enhancing the search proportional-integral derivative controller for automatic gen- ability of differential evolution through orthogonal crossover eration control of interconnected power system[J].IET [J].Information science,2012,185(1):153-177. generation,transmission and distribution,2014,8(11): [53]ELSAYED S M,SARKER R A,RAR T.Differential evo- 1789-1800. lution with automatic parameter configuration for solving [42]CHIOU J P,CHANG C F,SU CT.Ant direction hybrid the CEC2013 competition on real-parameter optimization differential evolution for solving large capacitor placement [C]//Proceedings of the IEEE Congress Evolution Com- problems[J].IEEE transactions on power systems,2004, putation.Cancun,Mexico,2013:1932-1937 19(4):1794-1800. [54]LIU J,LAMPINEN J.A fuzzy adaptive differential evolution [43 RUDOLPH G.Self-adaptive mutations may lead to algorithm C ]//Proceedings of the IEEE Region 10 premature convergence[J].IEEE transactions on evolu- Conference on Computers,Communications,Control and tionary computation,2001,5(4):410-414. Power Engineering.Beijing,China,2002,9(6):606-611. [44 LAMPINEN J,ZELINKA I.On stagnation of the [55]BBASS H A.The self-adaptive Pareto differential evolution differential evolution algorithm [C]//Proceedings of the algorithm[C]//Proceedings of the IEEE Congress on Evo- 6th International Mendel Conference on Soft Computing. lutionary Computation.Honolulu,HI,USA,2002: Brno,Czech Republic,2000:76-83. 831-836. [45]DAS S,KONAR A,CHAKRABORTY U K.Two improved [56]TEO J.Exploring dynamic self-adaptive populations in dif- differential evolution schemes for faster global search ferential evolution[J].Soft computation,2006,10(8): [C ]//Proceedings of the Genetic Evolutionary 673-686. Computation.Washington DC,USA,2005:991-998. [57]TANABE R,FUKUNAGA A.Success-history based pa- [46]STORN R.Differential evolution research-trends and open rameter adaptation for differential evolutionC//Proceed- questions[J].Study in computational intelligence,2008, ings of the IEEE Congress on Evolutionary Computation. 143:1-31. Cancun,Mexico,2013:71-78. [47]邓可,林杰,张鹏.基于信息嫡的异类多种群蚁群算法 [58]TVRDIK J,POLAKOVAR.Competitive differential evolution [J].计算机工程与应用,2008,44(36):16-19. applied to CEC 2013 problems[C]//Proceedings of the IEEE DENG Ke,LIN Jie,ZHANG Peng.Multiple heterogeneous Congress on Evolutionary Computation.Cancun,Mexico, ant colonies algorithm based on information entropy[J]. 2013:1651-1657. Computer engineering and applications,2008,44(36): 59]COELHO L S.AYALA H V H,FREIRE R Z.Population's
individual⁃dependent mechanism[J]. IEEE transactions on evolutionary computation, 2015, 19(4): 560-574. [37]QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global nu⁃ merical optimization[J]. IEEE transactions on evolutionary computation, 2009, 13(2): 398-417. [ 38 ] BREST J, GREINER S, BOSKOVIC B, et al. Self⁃ adapting control parameters in differential evolution: a comparative study on numerical benchmark problems[ J]. IEEE transactions on evolutionary computation, 2006, 10 (6): 646-657. [39]ZHANG J, SANDERSON A C. JADE: adaptive differential e⁃ volution with optional external archive[J]. IEEE transactions on evolutionary computation, 2009, 13(5): 945-958. [40]AHADZADEH B, MENHAJ M B. A modified differential evolution algorithm based on a new mutation strategy and chaos local search for optimization problems[C] / / Pro⁃ ceedings of the 4th International Conference on Computer and Knowledge Engineering. Mashhad, Iran, 2014: 468-473. [41]SAHU B K, PATI S, PANDA S. Hybrid differential evolu⁃ tion particle swarm optimisation optimised fuzzy proportional⁃integral derivative controller for automatic gen⁃ eration control of interconnected power system [ J]. IET generation, transmission and distribution, 2014, 8( 11): 1789-1800. [42]CHIOU J P, CHANG C F, SU CT. Ant direction hybrid differential evolution for solving large capacitor placement problems[J]. IEEE transactions on power systems, 2004, 19(4): 1794-1800. [ 43 ] RUDOLPH G. Self⁃adaptive mutations may lead to premature convergence[J]. IEEE transactions on evolu⁃ tionary computation, 2001, 5(4): 410-414. [44 ] LAMPINEN J, ZELINKA I. On stagnation of the differential evolution algorithm [ C] / / Proceedings of the 6th International Mendel Conference on Soft Computing. Brno, Czech Republic, 2000: 76-83. [45]DAS S, KONAR A, CHAKRABORTY U K. Two improved differential evolution schemes for faster global search [ C ] / / Proceedings of the Genetic Evolutionary Computation. Washington DC, USA, 2005: 991-998. [46] STORN R. Differential evolution research⁃trends and open questions[ J]. Study in computational intelligence, 2008, 143: 1-31. [47]邓可,林杰,张鹏. 基于信息熵的异类多种群蚁群算法 [J].计算机工程与应用, 2008, 44(36): 16-19. DENG Ke, LIN Jie, ZHANG Peng. Multiple heterogeneous ant colonies algorithm based on information entropy [ J]. Computer engineering and applications, 2008, 44 ( 36): 16-19. [48]陈俊风,吴铁军.群体智能算法搜索策略的性质及对停 滞现象的影响[ J].系统工程理论与实践, 2013, 06: 1587-1595. CHEN Junfeng, WU Tiejun. The property of search strate⁃ gies of swarm intelligent algorithms and their influences on stagnation [ J]. Systems engineering⁃theory and practice, 2013, 06: 1587-1595. [49]GÄMPERLE R, MÜLLER S D, KOUMOUTSAKOS P. A parameter study for differential evolution [ M] / / Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Com⁃ putation, A. Grmela and N. E. Mastorakis, Eds. Interlaken, Switzerland: WSEAS Press, 2002: 293-298. [50]RÖNKKÖNEN J, KUKKONEN S, PRICE K V. Real⁃pa⁃ rameter optimization with differential evolution [ C] / / Pro⁃ ceedings of the IEEE Congress Evolutionary Computation. Edinburgh, UK, 2005, 1: 506-513. [51]WANG Y, CAI Z, ZHANG Q. Differential evolution with com⁃ posite trial vector generation strategies and control parameters[J]. IEEE transactions evolutionary computation, 2011, 15(1): 55-66. [52] WANG Y, CAI Z, ZHANG Q. Enhancing the search ability of differential evolution through orthogonal crossover [J]. Information science, 2012, 185(1): 153-177. [53]ELSAYED S M, SARKER R A, RAR T. Differential evo⁃ lution with automatic parameter configuration for solving the CEC2013 competition on real⁃parameter optimization [C] / / Proceedings of the IEEE Congress Evolution Com⁃ putation. Cancun, Mexico, 2013: 1932-1937. [54]LIU J, LAMPINEN J. A fuzzy adaptive differential evolution algorithm [ C ] / / Proceedings of the IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering. Beijing, China, 2002, 9(6): 606-611. [55]BBASS H A. The self⁃adaptive Pareto differential evolution algorithm[C] / / Proceedings of the IEEE Congress on Evo⁃ lutionary Computation. Honolulu, HI, USA, 2002: 831-836. [56]TEO J. Exploring dynamic self⁃adaptive populations in dif⁃ ferential evolution[ J]. Soft computation, 2006, 10( 8): 673-686. [57] TANABE R, FUKUNAGA A. Success⁃history based pa⁃ rameter adaptation for differential evolution[C] / / Proceed⁃ ings of the IEEE Congress on Evolutionary Computation. Cancun, Mexico, 2013: 71-78. [58]TVRDÍK J, POLÁKOVÁR. Competitive differential evolution applied to CEC 2013 problems[C] / / Proceedings of the IEEE Congress on Evolutionary Computation. Cancun, Mexico, 2013: 1651-1657. [59]COELHO L S, AYALA H V H, FREIRE R Z. Population’s ·440· 智 能 系 统 学 报 第 12 卷