4 Hermite矩阵特征值的变分特征 定义:设A∈CM为 Hermite矩阵x∈C,称 H R(x)= x≠0 H 为A的 Rayleigh商
返回 4 Hermite矩阵特征值的变分特征 定义: 设 AC nn 为Hermite矩 阵, xC,称 ( ) = x 0 x x x Ax R x H H 为A的Rayleigh商
定理1( Rayleigh-Rtz): 设A∈CM为 ermita矩阵,则 (1)anr xsx Axsmxx (vrec (2)Amax =n1= max r(x)=max x Ax x≠0 H (3)amin =an=min R(x)=min x Ax x≠0 H
返回 定理1(Rayleigh-Ritz): 设 AC nn 为Hermite矩阵,则 (1) ( ) 1 H H H n n x x x Ax x x x C R x x Ax H x x x H 0 1 (2) max 1 max ( ) max = = = = R x x Ax H x x x n H 0 1 (3) min min ( ) min = = = =
证:A为 Hermite矩阵→ A=UMU,A=dig(1,A2,…)Vx∈Cn x ax =x U AUx =(Ux)"A(Ux) J=Ux Ax =∑1|y i=1 →x"4x≥m.∑ly}=mny"y=mx"x →x" Ax<a∑|J2=1myy= H max min·x"xsx"Ax≤λmx:x"x
返回 证: A为Hermite矩阵 1 2 , ( , , ) H A U U diag = = n n xC x Ax H H H = x U Ux ( ) ( ) H = Ux Ux 2 1 | | n H i i i x Ax y = = 2 min 1 | | n H i i x Ax y = y Ux = min H = y y min H = x x 2 max 1 | | n H i i x Ax y = max H = y y max H = x x x x x Ax x x H H H min max
定理2( Courant- Fischer):设A∈CN"为 Hermite 矩阵特征值为≤2≤…≤4k为给定的正 整数,1≤k≤n,则 mn max R()=nk n 01b n-k ∈ x≠0,x∈Cn x⊥a1,02.…On-k max min R()=nk ①1,02,…,Ok-1x≠0,x∈Cn x⊥a1 k-1
返回 k x C x x C R x n k n n n k = − − ⊥ min max ( ) , , 0, 1, 2, 1, 2, 定理2(Courant -Fischer):设 为Hermite n n A C 矩阵, 特征值为1 2 n ,k为给定的正 整数,1 k n,则 k x x x C R x k n k = − − ⊥ max min ( ) 1, 2, 1 1, 2, 1 , 0, ,
证:A为 Hermite矩阵 A=U AU, A=diag(n, n2,"An) xHAx (Ux)A(Ux R(x)=rHx (Ux)(Ux)
返回 证: A为Hermite矩阵 1 2 , ( , , ) H A U U diag = = n x x x Ax R x H H ( ) = ( ) ( ) ( ) ( ) H H Ux Ux Ux Ux =
{Ux:x∈C"且x≠0}={∈C":y≠0} n 1,02,…,On-k∈C maxR(x)=maX气 Ay x≠0,x∈Cm y≠0,y∈Cn H =,max∑4y1P yUa1…,Uo.,l=1
返回 1, 2, 1, 0, 0, , , max ( ) max n n n k n k H H x x C y y C x y U U y y R x y y − − ⊥ ⊥ = 1 , 2 1 1 , max | | H n k n i i y y i y U U y − = = ⊥ = { : 0} { : 0} n n Ux x C x y C y = 且 n 1 ,2 , ,n−k C
≥max∑4|yP ⊥Ua1.…,Un-k V1=y yI -1=0 max ∑列12≥k y+1+…+n=1k y⊥Ua1…,UOnk
返回 1 , 1 2 1 0 2 1 1 , max | | H n k k n i i y y i y U U y y y y − − = = = ⊥ = = = 2 2 2 1 1 , 2 | | | | | | 1 , max | | k k n n k n i i k y y y i k y U U y + − + + + = = ⊥ =
max R(x)≥k x≠0.x∈C x⊥01,02,,On-k ;=ln-i+1U=(1,u2,…,Ln) mn maX R(x)=nk 01b x≠0,x∈C x⊥1 2.'gOn-k
返回 k x x x C R x n k n ⊥ − max ( ) , 0, 1, 2, ( , , , ) i = un−i+1 U = u1 u2 un k x x x C R x n k n n k = − − ⊥ min max ( ) , 0, , 1, 2, 1, 2,
定理3Wey)设A,B∈C为 Hermite矩阵则 Vk=1,2,…,n,有 k(A)+xn(B)≤k(4+B)≤Ak(A)+1(B) 证:x≠0,x∈C H Bx n(B)s~≤A1(B)
返回 定理3(Weyl):设 A,BC nn 为Hermite矩 阵,则 ( ) ( ) ( ) ( ) ( ) k A + n B k A+ B k A + 1 B k = 1,2, ,n,有 证: n x 0, xC ( ) ( ) 1 B x x x Bx B H H n
H LK(A+B) (A+ B)x min max O1…,0n-kx≠(0, H ⊥O1 k XAx x Bx min max x≠0 H H 01,…,0n-k ⊥1,…,0 H Ax ≥min max x≠0 .+n(B) n-k x⊥O1,,Cn2-k nK(A)+mn(B
返回 x x x A B x A B H H x x k n k n k ( ) ( ) min max , , , , 0, 1 1 + + = − − ⊥ = + − − ⊥ x x x B x x x x A x H H H H x x n k n k , , , , 0, 1 1 min max + − − ⊥ min max ( ) , , , , 0, 1 1 B x x x A x H n H x x n k n k (A) (B) = k + n