第3章红外光谱法 (Infrared Spectrometry, IR) 3.1概述 (Introduction) 3.2基本原理 (Principle) 3.3红外光谱仪 (Infrared Spectrograph) 3.4试样的处理和制备 (Treatment and Preparation of Samples) 3.5红外光谱法的应用 (Applications of Infrared Spectrometry) 3.6激光 Raman光谱法简介 (Brief Introduction to Laser Raman Spectrometry) 31概述 红外光谱又称为分子振动转动光谱,也是一种分子吸收光谱。当样品受到频率连续变化 的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变 化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度 减弱.记录红外光的百分透射比与波数或波长关系的曲线,就得到红外光谱红外光谱法不 仅能进行定性和定量分析,而且从分子的特征吸收可以鉴定化合物和分子结构 (一)红外光区的划分 红外光谱在可见光区和微波光区之间,其波长范围约为0.75~1000um根据实验技术 应用的不同,通常将红外区划分成三个区近红外光区(0.75~2.5μm),中红外光区 (2.5~25um)和远红外光区(25~1000um)(见表31)其中中红外区是研究和应用最多的区 域,一般说的红外光谱就是指中红外区的红外光谱 表31红外光谱的三个波区 区 域 /um vcm- 能级跃迁类型 近红外区(泛频区) 0.75~2.5 13158~4000OH及CH键的倍频吸收 中红外区(基本振动区)2.5~25 4000~400分子振动,伴随转动 远红外区(转动区) 25~1000 400~10 分子转动 红外吸收光谱一般用T-曲线或T-曲线来表示。如图3.1所示,纵坐标为百分透射比 T%,因而吸收峰向下,向上则为谷;横坐标是波长(单位为um),或波数v(单位为cm)λ与 v之间的关系为:Vcm-1=104/(/um).因此,中红外区的波数范围是4000400cm.用波数 描述吸收谱带较为简单,且便于与 Raman光谱进行比较。近年来的红外光谱均采用波数等间 53
隔分度,称为线性波数表示法。 a um 图3.1苯酚的红外吸收光谱 (二)红外光谱法的特点 与紫外-可见吸收光谱不同,产生红外光谱的红外光的波长要长得多,因此光子能量 低。物质分子吸收红外光后,只能引起振动和转动能级跃迁,不会引起电子能级跃迁。所以 红外光谱一般称为振动-转动光谱 紫外-可见吸收光谱常用于研究不饱和有机化合物,特别是具有共轭体系的有机化合 物,而红外光谱法主要研究在振动屮伴随有偶极矩变化的化合物。因此除了单原子分子和同 核分子,如NeHO2和H2等之外,几乎所有的有机化合物在红外光区均有吸收.红外吸收 谱带的波数位置、波峰的数目及其强度,反映了分子结构上的特点可以用来鉴定未知物的分 子结构组成或确定其化学基团;而吸收谱带的吸收强度与分子组成或其化学基团的含量有关 可用作进行定量分析和纯度鉴定 红外光谱分析对气体液体、固体样品都可测定,具有用量少、分析速度快、不破坏试样等 特点,使红外光谱法成为现代分析化学和结构化学的不可缺少的工具。但对于复杂化合物的 结构测定,还需配合紫外光谱、质谱和核磁共振波谱等其他方法,才能得到满意的结果 3.2甚本原理 (一)产生红外吸收的条件 红外光谱是由于分子振动能级(同时伴随转动能级)跃迁而产生的,物质分子吸收红外辐 射应满足两个条件 (1)辐射光子具有的能量与发生振动跃迁所需的跃迁能量相等以双原子分子的纯振动 光谱为例,双原子分子可近似看做谐振子。根据量子力学,其振动能量E是量子化的 E、=(+)h (3.1) 式屮ν为分子振动频率;h为 Planck常数,为振动量子数,υ=0,1,2,3,…,分了中不同振动 能级的能量差△B=△hv.吸收光子的能量hv必须恰等于该能量差,因此 在常温下绝大多数分子处于基态(t=0),由基态跃迁到第一振动激发态(=1)所产生的吸收 谱带称为基频谱带。因为△=1,因此
(3.3) 也就是说,基频谱带的频率与分子振动频率相等 (2)辐射与物质之间有耦合作用为满足这个条件,分子振动必须伴随偶极矩的变化 红外跃迁是偶极矩诱导的即能量转移的机制是通过振动过程所导致的偶极矩的变化和交变 的电磁场(这里是红外光)相互作用而发生的。分子由于构成它的各原子的电负性的不同,也 显示不同的极性称为偶极子,通常用分子的偶极矩()来描述分子极性的大小.当偶极子 处在电磁辐射的电场中时,该电场作周期性反转,偶极子将经受交替的作用力而使偶极矩增 加和减少。由于偶极了具有一定的原有振动频率,显然,只有当辐射频率与偶极子频率相匹 配时,分子才与辐射相互作用(振动耦合)而增加它的振动能,使振幅增大,即分子由原来的基 态振动跃迁到较高的振动能级,因此,并非所有的振动都会产生红外吸收,只有发生偶极矩 变化(△≠0)的振动才能引起可观测的红外吸收光谱,该分子称之为红外活性的。A=0的分 子振动不能产生红外振动吸收,称为非红外活性的 由上述可见,当一定频率的红外光照射分子时,如果分子中某个基团的振动频率和它 致,二者就会产生共振,此时光的能量通过分子偶极矩的变化而传递给分子,这个基团就吸收 一定频率的红外光,产生振动跃迁;如果红外光的振动频率和分子中各基团的振动频率不匹 配,该部分的红外光就不会被吸收.如果用连续改变频率的红外光照射某试样,由于试样对 不同频率的红外光吸收的程度不同,使通过试样后的红外光在一些波数范围减弱了,在另一 些波数范围内则仍较强.由仪器记录该试样的红外吸收光谱,如图3所示 (二)双原子分子的振动 分子中的原子以平衡点为中心,以非常小的振幅(与原子核之间的距离相比)作周期性的 振动,可近似地看做简谐振动。这种分子振动的模型,以经典力学的方法可把两个质量为m 和m2的原子看做刚休小球,连接两原子的化学键设想成无质量的弹簧,弹簧的长度r就是分子 化学键的长度(图3.2).由经典力学可导出该体系的基 本振动频率计算公式 (34) p 或 (35) 图32双原子分子振动示意图 式中k为化学键的力常数,其定义为将两原子由平衡位置伸长单位长度时的侠复力(单位为 N·cm-),单键、双键和叁键的力常数分别近似为5、10和15N·cn1;c为光速 299×100cm·s;为折合质量,单位为g,且 036) 根据小球的质量和相对原子质量之间的关系,(36)式可写为 =N2 =1302 k A 37) 式中N是 Avogadro常数(602×102mo1-),A是折合相对原子质量,如两原子的相对原
子质量分别为A(1和A2,则 4一x 8) 式(35)或式(37)为分子振动方程式。对于双原子分子或多原子分子中其他因素影响较小的 化学键,用式(37)计算所得的波数ν与实验值是比较接近的 从(37)式可见,影响基本振动频率的直接因素是相对原子质量和化学键的力常数.化学 键的力常数k越大,折合相对原子质量A,越小则化学键的振动频率越高,吸收峰将出现在 高波数区反之则出现在低波数区.例如,C一C≤、>C=C双键>单键。因此在红外光谱中,一C≡C一键的吸 收峰出现在约2m,而>C=C<约在166m,C-C≤约在1429m-.对于相同 化学键的基团v与相对原子质量平方根成反比.例如,C一C、C一O、C—N键的力常数相 近,但相对原子折合质量不同,其大小顺序为C-C<C一N<C-O,因而这三种键的基频振 动峰分别出现在1430cm1、1330cn-和1280cm‘附近 需要指出的是,上述用经典方法来处理分子的振动是宏观处理方法,或是近似处理方法 但一个真实分子的振动能量变化是量子化的。另外,分子中基团与基团之间,基团中的化学 键之间都相互有影响,除了化学键两端的原子质量、化学键的力常数影响基本振动频率外,还 与内部因素(结构因素)和外部因素(化学环境)有关。 (三)多原子分子的振动 多原子分子由于组成原子数目增多,组成分子的键或基团和空间结构的不同,其振动光谱 比双原子分子要复杂得多。但是可以把它们的振动分解成许多简单的基本振动,即简正振 1.简正振动 简正振动的振动状态是,分子质心保持不变,整体不转动,每个原子都在其平衡位置 附近做简谐振动,其振动频率和位相都相同,即每个原子都在同一瞬间通过其平衡位置 而且同时达到其最大位移值。分子中任何一个复杂振动都可以看成这些简正振动的线性 组合 2.简正振动的基本形式 一般将振动形式分成两类:伸缩振动和变形振动。 (1)伸缩振动原子沿键轴方向伸缩,键长发生变化而键角不变的振动称为伸缩振动,用 符号v表示.它又可以分为对称伸缩振动(符号v)和不对称伸缩振动(符号v)。对同一基 团来说,不对称伸缩振动的频率要稍高于对称伸缩振动 (2)变形振动(又称弯曲振动或变角振动)基团键角发生周期变化而键长不变的振动称 为变形振动,用符号8表示,变形振动又分为面内变形和面外变形振动。面内变形振动又分 为剪式(以δ表示)和平面摇摆振动(p),面外变形振动又分为非平面摇摆(o)和扭曲振动 甲基、亚甲基的各种振动形式如图33所示。变形振动的力常数比伸缩振动的小,因此 同一基团的变形振动都在其伸缩振动的低频端出现
对称仲媚 不对称伸 对称变形 不对称变形 :2872cm y:2962cm-1 1375cm 51450cm 对称伸等对称伸缩 式 面内摆 面外摇摆 扭曲 v:2853cm 296c 6:1465cm-p:720cm :300cm 250cm 图3.3甲基(a)亚甲基(b)的简正振动形式 分别表示运动力向垂直纸面向里和向外 3.基本振动的理论数 简正振动的数目称为振动自由度,每个振动自由度相应于红外光谱图上一个基频吸收 带,设分子由n个原子组成,每个原子在空间都有3个自由度,原子在空间的位置可以用直角 坐标系中的3个坐标xy、z表示,因此n个原子组成的分子总共应有3m个自由度,亦即3n种 运动状态,但在这3n种运动状态中,包括3个整个分子的质心沿x,yz方向平移运动和3个 整个分子绕x、yz轴的转动运动,这六种运动都不是分子的振动,因此振动形式应有 (3n-6)种.但对于直线型分子,若贯穿所有原子的轴是在x方向,则整个分子只能绕y、z转 动,因此直线型分子的振动形式为(3n-5)种。例如水分子是非线型分子,其振动自由度 =3×3-6=3,简正振动形式如图34所示,CO2分子是线型分子,振动自由度=3×3-5=4 其简正振动形式如图35所示 不对称伸缩 弯曲振动 "3652cm V:3756c 6】595cm 图34水分子的简正振动形式 o0⑤页⑤Q①o⑤ 对称伸 不对称伸缩 内弯曲 外弯曲 v:2349cm 图3.5Co2分子的简正撮动形式 、-分别表示垂直于纸面向里和向外运动
每种简正振动都有其特定的振动频率,似乎都应有相应的红外吸收谱带.有机化合物一 般由多原子组成,因此红外吸收光谱的谱峰一般较多。但实际上,红外光谱中吸收谱带的数 目并不与公式计算的结果相同。基频谱带的数目常小于振动自由度。其原因有:(i)分子的振 动能否在红外光谱中出现及其强度与偶极矩的变化有关。通常对称性强的分子不出现红外光 谐,即所谓非红外活性的振动,如CO2分子的对称伸缩振动,为1388cm-,该振动△=0,没有 偶极矩变化,所以没有红外吸收,CO2的红外光谱中没有波数为1388cm-1的吸收谱带.(i)简 并。有的振动形式虽不同,但它们的振动频率相等,如CO2分子的面内与面外弯曲振动 iⅱ)仪器分辨率不高或灵敏度不够,对一些频率很接近的吸收峰分不开,或对一些弱峰不 能检出, 在屮红外吸收光谱中,除了基团由基态向第一振动能级跃迁所产生的基频峰外,还有由基 态跃迁到第二激发态第三激发态等所产生的吸收峰,称之为倍频峰。除倍频峰外,还有合頻 峰ⅵ+以,2+υ2,¨…,差频峰v-v2,2一,…等。倍频峰、合频峰和差频峰统称为泛频谱 带。泛频谱带一般较弱,且多数出现在近红外区。但它们的存在增加了红外光谱鉴别分子结 构的特征性。 (四)吸收谱带的强度 红外吸收谱带的强度取决于分子振动时偶极矩的变化而偶极矩与分子结构的对称性有 关。振动的对称性越高,振动中分子偶极矩变化越小,谱带强度也就越弱。因而一般说来,极 性较强的基闭(如C=O,C-X等)振动,吸收强度较大;极性较弱的基团(如C=CC-〔 N=N等)振动,吸收较弱。红外光谱的吸收强度一般定性地用很强(ws)强(s)、中(m)、弱(w 和很弱(ww)等来表示 (五)甚团频率 1.官能团具有特征吸收频率 红外光谐的最大特点是具有特征性,这种特征性与各种类型化学键振动的特征相联系 因为不管分子结构怎么复杂,都是由许多原子基团组成,这些原子基团在分子受激发后都会 产生特征的振动.大多数有机化合物都是由CH、O、NS、P、卤素等元素构成,而其中最主 要的是CHON四种元素,因此可以说大部分有机化合物的红外光谱基本上是由这四种 元素所形成的化学键的振动贡献的.利用分子振动方程式[(35)或(37)式]只能近似地计算 简单分子中化学键的基本振动频率。对于大多数化合物的红外光谱与其结构的关系,实际上 还是通过大量标准样品的测试,从实践中总结出了一定的官能团总对应有一定的特征吸收 也就是说,在研究了大量化合物的红外光谱后发现,不同分子中同一类型的基团的振动频率 是非常相近的,都在一较窄的频率区间出现吸收谱带,这种吸收谱带的频率称为基团频率 例如,一CH2基团的特征频率在2800~3000cm-1附近,一CN的吸收峰在2250cm1附近, OH伸缩振动的强吸收谱带在3200~3700cm-1等。由于在分子中原子间的主要作用力是 连接原子的价键力,虽然在红外光谱中影响谱带位移的因素很多,但在大多数情况下这些因 素的影响相对是很小的,可以认为力常数从一个分子到另一个分子的改变不会很大,因此在 不同分子内,和一个特定的基团有关的振动频率基本上是相同的, 2.基团频率区和指纹区 (1)基团频率区 中红外光谱区可分成4000-1300cm1和1800~600cm-1两个区域.最有分析价值的基
团频率在400~1300cm之间,这一区域称为基团频率区官能团区或特征区.区内的峰是 由伸缩振动产生的吸收带,比较稀疏,易于辨认,常用于鉴定官能团 在1800~600cm区域中,除单键的伸缩振动外还有因变形振动产生的谱带。这些振动 与整个分子的结构有关,当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分 子的特征。这种情况就像每个人有不同的指纹一样,因此称为指纹区。指纹区对于指认结构 类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证 基团频率区又可以分为三个区域 i)4000~2500cm为X一II伸缩振动区,X可以是O、H、C或S原子。O一H基的伸 缩振动出现在3650~3200cm范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依 据,当醇和酚溶于非极性溶剂(如CC),浓度小于001mol·dm时,在3650~3580cm处 岀现游离O一H基的伸缩振动吸收,峰形尖锐,且没有其他吸收峰于扰,易于识别。当试样浓度 增加时,羟基化合物产生缔合现象,O一H基伸缩振动吸收峰向低波数方向位移,在3400 3200cm-出现一个宽而强的吸收峰。有机酸的羟基形成氢键的能力更强,常形成两缔合体。 胺和酰胺的N一H仲缩振动也出现在3500~3100cm,因此可能会对OH伸缩振动 有千扰 C一H的伸缩振动可分为饱和的和不饱和的两种。饱和的CH伸缩振动出现在3000cm 以下,约3000~2800cm,取代基对它们的影响也很小。如一CH基的伸缩吸收出现在 2960cm()和2870cm1(v)附近;一CH2基的吸收在2930cm(m)和2850cm()附近 ≡CH基的吸收出现在2890cm’附近,但强度较弱。不饱和的C一H伸缩振动出现在 3000cm-1以上,以此来判别化合物中是否含有不饱和的C一H键。苯环的C一H伸缩振动出 现在3030cm·附近,它的特征是强度比饱和的C一H键稍弱,但谱带比较尖锐。不饱和的双 键=CH的吸收出现在3010~3040cm范围内,末端=CH2的吸收出现在3085cm 附近,而叁键≡CH上的C一H伸缩振动出现在更高的区域(3300cm-)附近 i)2500~1900cm-1为叁键和累积双键区。这一区域出现的吸收,主要包括-C≡C、 C≡N等叁键的仲缩振动,以及一C=C=C-C=C=O等累积双键的不对称伸缩振动 对于炔类化合物,可以分成R一C≡CH和R-C=C-R两种类型,前者的伸缩振动出 现在2100~2140cm附近后者出现在2190~2260cm附近。如果R′=R,因为分子是对称的 则是非红外活性的。一C≡N基的伸缩振动在非共轭的情况下出现在2240~2260cm附 近,当与不饱和键或芳香核共轭时,该峰位移到220~230cm'附近,若分子中含有C、 H、N原子,一C≡N基吸收比较强而尖锐。若分子屮含有O原子,且O原子离C=N 基越近,一C≡N基的吸收越弱,甚至观察不到 Gi)1900~1200cm-1为双键伸缩振动区,该区域主要包括三种伸缩振动 ·C=O伸缩振动出现在1900~1650cm-,是红外光谱中很特征的且往往是最强 的吸收,以此很容易判断酮类醛类酸类酯类以及酸酐等有机化合物。酸酐的羰基吸收谱带 由于振动耦合而呈现双峰 ●C=C伸缩振动。烯烃的v=c为1680~t620cm-',一般较弱.单核芳烃的C=C 伸缩振动出现在1600cm-1和1500cm-1附近,有2~4个峰,这是芳环的骨架振动,用于确 认有无芳核的存在 ●苯的衍生物的泛频谱带,出现在2000~1650cm1范围,是C-H面外和C=C面
内变形振动的泛频吸收,虽然强度很弱,但它们的吸收面貌在表征芳核取代类型上是很有用的 (见图3.6)。 单取代 邻二取代 八 对二取代 v/cm 图36苯的衍生物在2000~1667cm和900~650cm的红外吸收谱 (2)指纹区(可以分为两个区域) (i)1800~900cm区域是C-O、C-NC一F、C一PC-S、P-OSi-O等单键的 伸缩振动和C=S、S=O、P=0等双键的伸缩振动吸收。其中≈1375cm-的谱带为甲基的 6对称弯曲振动,对判断甲基十分有用.C-O的伸缩振动在1300~1000cm-,是该区域 最强的峰,也较易识别。 (i)900~650cm-区域内的某些吸收峰可用来确认化合物的顺反构型,利用芳烃的 C-H面外弯曲振动吸收峰来确认苯环的取代类型(图36).例如烯 分子的其余部分 烃的=C-H面外变形振动出现的位置,很大程度上决定于双键取 代情况。其在反式构型以C=C<m中,出现在990~970cm-1,而 R 在顺式构型C=C〈订中,则出现在690cm1附近 多数情况下,一个官能团有数种振动形式,因而有若干相互依存 而又相互佐证的吸收谱带,称为相关吸收峰,简称相关峰。例如醇羟 基(图3.7),除了O一H键伸缩振动(①,370~3200cm-)强吸收 谱带外,还有面外弯曲(②,1410~1260cm-)、C一O伸缩振动(⑧, 图3.7醇羟基的振动 1250~1000cm-)和面外弯曲(④,750~650cm-)等谱带,用一组 相关峰确认一个基团的存在,是红外光谱解析的一条重要原则。 3.影响基团频率的因素 基团频率主要是由基团中原子的质量及原子间的化学键力常数决定,然而分子的内部结 构和外部环境的改变对它都有影响因而同样的基团在不同的分子和不同的外界环境中,基团 频率可能会有一个较大的范围,因此了解影响基团频率的因素,对解析红外光谱和推断分子 结构是十分有用的
影响基团频率位移的因素大致可分为内部因素和外部因素。内部因素有以下几种 (1)电子效应包括诱导效应、共轭效应和中介效应,它们都是由于化学键的电子分布不 均匀而引起的 i)诱导效应(Ⅰ效应)。由于取代基具有不同的电负性,通过静电诱导作用,引起分子中 电子分布的变化,从而改变了键力常数,使基团的特征频率发生位移。例如,一般电负性大的 基团〔或原子)吸电子能力强,与烷基酮羰基上的碳原子相连时,由于诱导效应就会发生电子 云由氧原子转向双键的中间(表中箭头所示),增加了C=O键的力常数,使C=O的振动频 率升高,吸收峰向高波数移动。随着取代原子电负性的增大或取代数日的增加,诱导效应越 强.吸收峰向高波数移动的程度越显著。 1800 1928 化合物 RC-R’R lC|·C→(1F←C→f (i)共轭效应(C效应)。共轭效应使共轭体系中的电子云密度平均化,结果使原来的双 键略有伸长(即电子云密度降低)、力常数减小,使其吸收频率往往向低波数方向移动。例如 酮的C=O,因与苯环共轭而使C=O的力常数减小,振动频率降低。 化合物 Ve=n/Cm 1710~1725 1695~1680 oC 667~1661 一CH=CH一R 667~1653 O (i)中介效应(M效应)。当含有孤对电子的原子(ONS等)与具有多重键的原子相连 时,也可起类似的共轭作用,称为中介效应。例如酰胺 中的C=O因氮原子的共轭作用,使C=O上的电子云更移向氧原子C=0双键的电子云密 度平均化造成C=O键的力常数下降,使吸收频率向低波数位移(1650cm-左右) 对同一基团来说若诱导效应I和中介效应M同时存在则振动频率最后位移的方向和程度 取决于这两种效应的净结果。当I效应>M效应时,振动频率向高波数移动;反之,振动频率向
低波数移动。例如,饱和酯的C=O伸缩振动频率为1735cm,比酮(1715cm-)高,这是因为 OR基的I效应比M效应大。而一SR基的I效应比M效应小,因此C=O振动频率移向 低波数。 bRR—CR R 1715cm (I效应>M效应) (I效应<M效应) 2)氢键的影响氢键的形成使电予云密度平均化,从而使伸缩振动频率降低,最明显的 是羧酸的情况,羰基和羟基之间容易形成氢键,使羰基的频率降低。游离羧酸的C=O频率出现 在1760cm左右,而在液态或固态时,C=O频率都在1700cm-,因为此时羧酸形成二聚体形式 RCOOH 0→H =176 分子内氢键不受浓度影响,分子间氢键则受浓度影响较大。例如,以CC4为溶剂测定乙 醇的红外光谱,当乙醇浓度小于00mo·dm3时,分子间不形成氢健,而只显示游离的—OH 的吸收(3640cm-);但随着溶液中乙醇浓度的增加,游离羟基的吸收减弱,而二聚体(3515cm-2) 和多聚体(3350cm-)的吸收相继出现,并显著增加.当乙醇浓度为10mldm3时,主要是 以缔合形式存在(图38) 4000 图38不同浓度的乙醇Ca溶液的红外光谱片段 I-1.0 moldm3Ⅱ-0.25mol·dm-3Ⅲ-0.10mol·dm-3Ⅳ-00lmol·dm-31 (3)振动耦合当两个振动频率相同或相近的基团相邻并具有一公共原子时,由于一个 键的振动通过公共原子使另一个键的长度发生改变,产生一个“徵扰”,从而形成了强烈的振 动相互作用.其结果是使振动频率发生变化,一个向高频移动,一个向低频移动,谱带分裂 振动耦合常出现在一些二羰基化合物中。例如羧酸酐 R2-C 62