第二章实时参数估计 (real-time parameter estimation 21介绍 Self-tuning regulator Specification Process parameters Controller Estimation design Controll parameters Reference Controller Process Input Output Figure 1. 19 Block diagram of a self-tuning regulator(STR)
第二章 实时参数估计 (real-time parameter estimation) 2.1 介绍
系统辨识的基本内容 (system identification) V模型结构的选择 V试验设计:输入信号的选取 V参数估计 V验证 传递函数模型
▽ 模型结构的选择 系统辨识的基本内容 (system identification) ▽ 验证 ▽ 试验设计:输入信号的选取 ▽ 参数估计 传递函数模型
最小二乘法 (least-squares method) 持续激励( persistent excitation)
持续激励(persistent excitation) 最小二乘法 (least-squares method)
22最小二乘法和回归模型 (regression model) Gauss18世纪末原理确定行星轨道 the sum of squares of the differences between the actually observed and the computed values, multiplied by numbers that measure the degree of precision, is a minimum
2.2 最小二乘法和回归模型 (regression model) Gauss 18世纪末 原理 确定行星轨道 the sum of squares of the differences between the actually observed and the computed values, multiplied by numbers that measure the degree of precision, is a minimum
y()=9()+2(1)02+…+91()0 (21) =g(1)0 P(= 2(i 回归变量( regression variab|e) P=le2…gy
( ) ( ) ( ) ( ) 1 2 φ i φ i φ i φ i n T = 0 0 0 2 2 0 1 1 ( ) ( ) ( ) ( ) ( ) φ i θ y i φ i θ φ i θ φ i θ T n n = = + ++ T n θ θ θ θ 0 0 2 0 1 0 = 回归变量(regression variable) (2.1)
Y(,1)=∑v()-9()02(22) 损失函数( loss function) 代价函数( cost function) Y()=[y(1)y(2) E()=c()e(2)
T Y(t) = y(1) y(2) y(t) = = − t i T Y θ t y i φ i θ 1 2 [ ( ) ( ) ] 2 1 ( , ) T E(t) = ε(1) ε(2) ε(t) 损失函数(loss function) 代价函数(cost function) (2.2)
Φ(t) P0)=(0(000(00)423 e(i)=y(i)-y(i)=y(i)-g(i)0 残差( residuals)
( ) ( ) 1 1 1 ( ) ( ) ( ) ( ) ( ) − = − = = t i T T P t t t φ i φ i = ( ) (1) ( ) φ t φ t T T ε i y i y i y i φ i θ T ( ) = ( ) − ˆ( ) = ( ) − ( ) (2.3) 残差(residuals)
(,7226=EESI 2 E=Y-Y=Y-①0(24)
E =Y −Y =Y −θ ˆ 2 1 2 2 1 2 1 ( ) 2 1 V(θ,t) ε i E E E T t i = = = = (2.4)
定理21最小二乘估计 使损失函数(22)最小的参数应满足 ①ΦO=ΦY(2.5) 如果矩阵ΦΦ非奇异( nonsingular),则 最小值唯一,并且由下式给出 0=(b o'dDTY (2.6>
θ Y T T = θ ( ) Y T T = −1 (2.5) 定理2.1 最小二乘估计 使损失函数(2.2)最小的参数应满足 如果矩阵 非奇异(nonsingular),则 最小值唯一,并且由下式给出 (2.6) T
注1:方程(25)称为正规方程( normal equation) 式(26)可写为 0()=∑(0(|∑)y( (29) =P(∑)y( i=1
= = = = − = t i t i t i T P t φ i y i θ t φ i φ i φ i y i 1 1 1 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ˆ 注1:方程(2.5)称为正规方程(normal equation) (2.9) 式(2.6)可写为