当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 8 Limit Theorems

资源类别:文库,文档格式:PDF,文档页数:10,文件大小:231.05KB,团购合买
点击下载完整版文档(PDF)

8.2 CHEBYSHEVS INEQUALITY AND THE WEAK LAW( 8.3 The Central Limit Theorem 3o rule of normal distribution Suppose X N(u,o2) P(X-4<ka)=P(<k)=2Φ(k)-1 0P(0X-4<o)=2Φ(1)-1=0.683 0P(X-4<2a)=2Φ(2)-1=0.955 0P(X-4<3G)=2Φ(3)-1=0.997 4口t5,48)元2月00 Xiaohan Yang Chapter 8 Limit Theorems

logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem 3σ rule of normal distribution Suppose X N(µ, σ2 ) P(|X − µ| < kσ) = P(| x − µ σ | < k) = 2Φ(k) − 1 1 P(|X − µ| < σ) = 2Φ(1) − 1 = 0.683 2 P(|X − µ| < 2σ) = 2Φ(2) − 1 = 0.955 3 P(|X − µ| < 3σ) = 2Φ(3) − 1 = 0.997 Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEV'S INEQUALITY AND THE WEAK LAW 8.3 The Central Limit Theorem 30 rule of normal distribution Suppose X N(u,o2) PIX-4<ko)=PI2,1<k)=2(k)-1 0P(X-川<o)=2Φ(1)-1=0.683 gP(X-4川<2a)=2φ(2)-1=0.955 0P(X-4<3a)=2Φ(3)-1=0.997 4日5,43)手,3月00 Xiaohan Yang Chapter 8 Limit Theorems

logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem 3σ rule of normal distribution Suppose X N(µ, σ2 ) P(|X − µ| < kσ) = P(| x − µ σ | < k) = 2Φ(k) − 1 1 P(|X − µ| < σ) = 2Φ(1) − 1 = 0.683 2 P(|X − µ| < 2σ) = 2Φ(2) − 1 = 0.955 3 P(|X − µ| < 3σ) = 2Φ(3) − 1 = 0.997 Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEVS INEQUALITY AND THE WEAK LAW( 8.3 The Central Limit Theorem 3o rule of normal distribution Suppose X N(u,o2) P(X-4<ka)=P(<k)=2Φ(k)-1 0P(IX-4<o)=2φ(1)-1=0.683 0P(IX-4<2a)=2(2)-1=0.955 0P(IX-4<3o)=2φ(3)-1=0.997 4口913)元,王000 Xiaohan Yang Chapter 8 Limit Theorems

logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem 3σ rule of normal distribution Suppose X N(µ, σ2 ) P(|X − µ| < kσ) = P(| x − µ σ | < k) = 2Φ(k) − 1 1 P(|X − µ| < σ) = 2Φ(1) − 1 = 0.683 2 P(|X − µ| < 2σ) = 2Φ(2) − 1 = 0.955 3 P(|X − µ| < 3σ) = 2Φ(3) − 1 = 0.997 Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEV'S INEQUALITY AND THE WEAK LAW 8.3 The Central Limit Theorem Markov's inequality If X is a random variable that takes only nonnegative values,then for any value a >0, P(X≥a)≤ E[X] 日5,421手,3000 Xiaohan Yang Chapter 8 Limit Theorems

logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem Markov’s inequality If X is a random variable that takes only nonnegative values, then for any value a > 0ß P(X ≥ a) ≤ E[X] a Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEVS INEQUALITY AND THE WEAK LAW( 8.3 The Central Limit Theorem Chebyshev's's inequality If X is a random variable with finite mean E(X)=u and variance D(X)=a2,then for any valuee>0 P0X-川≥≤爱 Equivalently P(IX-E(X)1≥c)≤Dy 口15,18)4元,3000 Xiaohan Yang Chapter 8 Limit Theorems

logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem Chebyshev’s’s inequality If X is a random variable with finite mean E(X) = µ and variance D(X) = σ 2 , then for any value > 0 P(|X − µ| ≥ ) ≤ σ 2  2 Equivalently P(|X − E(X)| ≥ ) ≤ D(X)  2 Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEV'S INEQUALITY AND THE WEAK LAW 8.3 The Central Limit Theorem Theorem 2.1 The weak law of large numbers Let X1,...,Xn be a sequence of independent and identically distributed random variables.Each having finite mean E(Xi)u,D(Xi)-2.Then,for any c>0, P+,+X-川≥)→0 asn→∞ 4口5,42手·3000 Xiaohan Yang Chapter 8 Limit Theorems

logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem Theorem 2.1 The weak law of large numbers Let X1, · · · , Xn be a sequence of independent and identically distributed random variables. Each having finite mean E(Xi) ˆ=µßD(Xi) ˆ=σ 2 . Then, for any  > 0, P(| X1 + · · · + Xn n − µ| ≥ ) → 0 as n → ∞ Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEV'S INEQUALITY AND THE WEAK LAW 8.3 The Central Limit Theorem Theorem3.1 The Central Limit Theorem Let X1,...,X be a sequence of independent and identically distributed random variables.Each having finite mean E(Xi)=u and variance D(Xi)=o2.Then the distribution of X+…+Xn-n4 aVn tends to the standard normal as noo.That is,for -00<a<十0, imP2X-业≤X刘=() n-0o Vna Xiaohan Yang Chapter 8 Limit Theorems

logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem Theorem3.1 The Central Limit Theorem Let X1, · · · , Xn be a sequence of independent and identically distributed random variables. Each having finite mean E(Xi) = µ and variance D(Xi) = σ 2 . Then the distribution of X1 + · · · + Xn − nµ σ √ n tends to the standard normal as n → ∞. That is, for −∞ < a < +∞ß lim n→∞ P( Pn i=1 Xi − nµ √ nσ ≤ x) = Φ(x) Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEV'S INEQUALITY AND THE WEAK LAW 8.3 The Central Limit Theorem EXAMPLE 3C If 10 fair dice are rolled,find the approximate probability that the sum obtained is between 30 and 40,inclusive. 4日5,43)手,3月00 Xiaohan Yang Chapter 8 Limit Theorems

logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem EXAMPLE 3C If 10 fair dice are rolled, find the approximate probability that the sum obtained is between 30 and 40, inclusive. Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEV'S INEQUALITY AND THE WEAK LAW 8.3 The Central Limit Theorem Theorem3.3 De Moivre-Laplace The Central Limit Theorem Let X1,...,Xn be a sequence of independent and identically distributed random variables.Each Xi B(1,p).Then H-00<X<+00, mPX-吧≤x)=(x) Vnp(1-p) 1Xi~B(n,p),.when Y~B(n,p),n is large, P(a<X≤b)= ∑cpP1-p)- a<k≤b 中( b-np a-np √np(1-p) Vnp(1-p) 0a=0时,认为x=一0: b=n时,认地.9 Xiaohan Yang Chapter 8 Limit Theorems

logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem Theorem3.3 De Moivre-Laplace The Central Limit Theorem Let X1, · · · , Xn be a sequence of independent and identically distributed random variables. Each Xi ∼ B(1, p). Then ∀ − ∞ < x < +∞ß lim n→∞ P( Pn i=1 Xi − np p np(1 − p) ≤ x) = Φ(x) 1 ∵ Pn i=1 Xi ∼ B(n, p)ß∴ when Y ∼ B(n, p)ßn is largeß P(a < X ≤ b) = X a<k≤b C k n p p (1 − p) n−k ≈ Φ( b − np p np(1 − p) ) − Φ( a − np p np(1 − p) ) 2 a = 0ûß@èx = −∞¶b = nûß@èb = +∞ Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEVS INEQUALITY AND THE WEAK LAW 8.3 The Central Limit Theorem Theorem3.3 De Moivre-Laplace The Central Limit Theorem Let X1,...,Xn be a sequence of independent and identically distributed random variables.Each Xi~B(1,p).Then V-00<X<十00, lim P(ZE1X-mp n→ Vnp(1-p) ≤x)=(x) .i B(n,p),.when Y~B(n,p),n is large, P(a<X≤b)=∑ChpP(1-p)-k a<k<b b-np -lm-可 a-np mp(1-p) 。a=0时,认为x=-∞;b=n时,认为地=才0:,,至a。 Xiaohan Yang Chapter 8 Limit Theorems

logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem Theorem3.3 De Moivre-Laplace The Central Limit Theorem Let X1, · · · , Xn be a sequence of independent and identically distributed random variables. Each Xi ∼ B(1, p). Then ∀ − ∞ < x < +∞ß lim n→∞ P( Pn i=1 Xi − np p np(1 − p) ≤ x) = Φ(x) 1 ∵ Pn i=1 Xi ∼ B(n, p)ß∴ when Y ∼ B(n, p)ßn is largeß P(a < X ≤ b) = X a<k≤b C k n p p (1 − p) n−k ≈ Φ( b − np p np(1 − p) ) − Φ( a − np p np(1 − p) ) 2 a = 0ûß@èx = −∞¶b = nûß@èb = +∞ Xiaohan Yang Chapter 8 Limit Theorems

点击下载完整版文档(PDF)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
已到末页,全文结束
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有