当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

自适应控制(英文)_Lecture3

资源类别:文库,文档格式:PDF,文档页数:6,文件大小:97.35KB,团购合买
点击下载完整版文档(PDF)

The idea Automate estim at ion and co nt rol Self-tuning regulator Deterministic sTR Process parameters 1. The idea 2. Pole placement desig n parameters ndirect STR Reference Controller Process 4. Continuo us time str Output 5. Direct stR 6. Distur bances wit h known properties The separat io n principle 7. Conclusio ns Estimate parameters Desig n co nt roller as if the estimates were correct.(The Cert ainty Equivalence Principle) lers Direct and indirect co nt rolle Process mode Pole placement design . Process Model A(q)y(t)=B(q)(u(+)+v(t) Model Following rely e Causality Co ndit io ns A(q-4)y(t)=B"(q-1)(u(t-d)+v(t-d) ● xam ples Interpret at io n of poly Relative degree do= deg A(g)-deg B Relations to Model followi Same notat io n for co ntinuo us time systems Ay(t=B(ut+u(t) C K.J. Astrom and BWittenmark

Deterministic STR 1. The idea 2. Pole placement design 3. Indirect STR 4. Continuous time STR 5. Direct STR 6. Disturbances with known properties 7. Conclusions The idea Automate estimation and control Process parameters Controller design Estimation Controller Process Controller parameters Reference Input Output Specification Self-tuning regulator The separation principle  Estimate parameters  Design controller as if the estimates were correct. (The Certainty Equivalence Principle)  Direct and indirect controllers Pole Placement Design  Process Model  Model Following  Causality Conditions  Examples  Interpretation of polynomial Ao  Relations to Model Following  Summary Process Model A(q)y(t) = B(q) (u(t) + v(t)) Alternatively A (q￾1 )y(t) = B (q￾1 ) (u(t ￾ d0) + v(t ￾ d0)) Relative degree d0 = deg A(q) ￾ deg B Same notation for continuous time systems Ay(t) = B (u(t) + v(t)) c K. J. Åström and B. Wittenmark 1

Closed Loop system Model Following Process Closed loop response Ay(t)=B(u(t)+u(t) yt AR+ Bsc(t) Co nt roller Desired respo nse Ru(t)=Tue(t)-Sy(t) Amym(t)=Bm(t) Controller Process Perfect model foll B BT Bn Cancellat ions in LHS,B=B+B Closed loop system Bm=bb BR Ac=A.+ y()=AR+ BS W(t)+ AR+Bs u(t) R=RB+ BS u(t) H AR+ B ()-AE+B50( Closed loop charact eristic polyno mial AR+ B-S=A.Am=A AR+BS=A Causality Conditions Example 3.1 Cancellation of Zero Tuc-S Sampling wit hh=0.5 Hence H(Q)=609+b1 0.1065g+0.0902 R 0.1761q q2+am1q+am2q2-1.32065g+04966 deg tdeg b (4) CK.J. Astrom and BWittenmark

Closed Loop System Process Ay(t) = B (u(t) + v(t)) Controller Ru(t) = T uc(t) ￾ Sy(t) Controller u Process y B A uc Ru = Tuc − Sy v Σ Closed loop system y(t) = BT AR + BS uc(t) + BR AR + BS v(t) u(t) = AT AR + BS uc(t) ￾ BS AR + BS v(t) Closed loop characteristic polynomial AR + BS = Ac Model Following Closed loop response y(t) = BT AR + BS uc(t) Desired response Amym(t) = Bmuc(t) Perfect model following BT AR + BS = BT Ac = BmAm Cancellations in LHS, B = B+B￾ Bm = B￾B0m Ac = AoAmB+ R = R0B+ (1) Hence AR0 + B￾ S = AoAm = A0c T = AoB0m Causality Conditions Controller Ru = T uc ￾ Sy Hence deg S  deg R deg T  deg R Diophantine Equation AR + BS = Ac has many solutions R = R0 + QB S = S0 ￾ QA We have deg A > deg B deg Ac  2 deg A ￾ 1 Example 3.1 Cancellation of Zero G(s) = 1 s(s + 1) Sampling with h = 0:5 H(q) = b0q + b1 q2 + a1q + a2 = 0:1065q + 0:0902 q2 ￾ 1:6065q + 0:6065 Bm(q) Am(q) = bm0q q2 + am1q + am2 = 0:1761q q2 ￾ 1:3205q + 0:4966 B+ (q) = q + b1=b0 B￾ (q) = b0 B0m(q) = bm0q=b0 (2) Choose Ao = 1 (q 2 + a1q + a2)  1 + b0(s0q + s1) = q 2 + am1q + am2 a1 + b0s0 = am1 a2 + b0s1 = am2 (3) s0 = am1 ￾ a1 b0 s1 = am2 ￾ a2b0 (4) c K. J. Åström and B. Wittenmark 2

Example 3.2-No Cance lation H()=a+a1q+a2=-16059+06065 Example 3. 3-Continuous time We have b+=1 andb-=B Bn(0)=B+b=4+一 G(s ose Dio phantine equation (q2+a19+a2)(q+71)+(bq+b1)(s0q+s1) Ao(s=s+a, Put q =-b1/bo solve for T1 B Xob+x1b061+ Dio phantine eq s(s+a(s+r1)+b(sos+s1) X1 Then solve fo Example 3. 3- Cont Identification of coefficients of powers of aT1+ bso =w+2cwao Inte rpre tation of poly nomial Ao What happens if we solve the pro blem wit h fb≠ state space met ho ds? What is the interpret ation of pole-zero cancel- T1=2Cw+ao-a C K.J. Astrom andB.Wittenmark

Example 3.2 - No Cancellation H(q) = b0q + b1 q2 + a1q + a2 = 0:1065q + 0:0902 q2 ￾ 1:6065q + 0:6065 We have B+ = 1 and B￾ = B = b0q + b1 Hm(q) = b0q + b1 q2 + am1q + am2 = bm0q + bm1 q2 + am1q + am2 Diophantine equation (q 2 + a1q + a2)(q + r1)+(b0q + b1)(s0q + s1) = (q 2 + am1q + am2)(q + ao) Put q = ￾b1=b0 solve for r1 r1 = X0b 2 0 + X1b0b1 + X2b 2 1 b 2 1 ￾ a1b0b1 + a2b 2 0 where X0 = aoam2 X1 = a2 ￾ am2 ￾ aoam1 X2 = ao + am1 ￾ a1 (5) Then solve for s0 and s1. Example 3.3 - Continuous time G(s) = b s(s + a) Choose Ao (s) = s + ao and Bm(s) Am(s) = !2 s2 + 2!s + !2 Diophantine equation s(s + a)(s + r1) + b(s0s + s1) = (s 2 + 2!s + !2 )(s + ao ) Example 3.3 - Cont. Identi cation of coecients of powers of s a + r1 = 2! + ao ar1 + bs0 = !2 + 2!ao bs1 = !2ao (6) If b 6= 0 r1 = 2! + ao ￾ a s0 = ao2! + !2 ￾ ar1 b s1 = !2ao b (7) Interpretation of Polynomial A0 What happens if we solve the problem with state space methods? What is the interpretation of pole-zero cancel￾lations? c K. J. Åström and B. Wittenmark 3

Relations to model followi The control law is Ru= Tuc-Sy № tice that Ro R ABm SBm Su mma ry Pole place me nt give s line ar e quations When do solutions e xist? T S ABm SBm S R Am Whe n do the y nat eXIst? ABmuc- R ()· What is the key difficulty? BAm E summation Proce ss model no distubances an(t-n bou(t-d (9) trod uang n bo Indirect ST r 1。 Estimation g(t-1)=(-y(t-1)…-y(t-n) (10) 2. An alo orithm The model be cores a re g re ssion y(t)="(t-1)9 Estimate S g iven by e(t)=6t-1)+K(t(t) c(t)=y(t)-g2(t-1)(t-1) P(t-1)p(t-1) K(t)=X+"(t-1)Pt-1)(t-(1) ()=÷(I-K(t)(t-1)Pt-1) C K.J. Astrom and BWittenmark

Relations to Model Following The control law is Ru = T uc ￾ Sy Notice that T R = AoB0m R = (AR0 + B￾ S)B0m AmR = ABm BAm + SBm RAm Hence u = T R uc ￾ S R y = ABm BAm uc + SBm RAm uc ￾ S R y = ABm BAm uc ￾ S R (y ￾ ym) (8) u y Σ Σ u c A B S R B A − 1 ym B m A m Summary  Pole placement gives linear equations  When do solutions exist?  When do they not exist?  What is the key diculty? Indirect STR 1. Estimation 2. An Algorithm 3. Examples Estimation Process model (No disturbances!) y(t) = ￾a1y(t ￾ 1) ￾ a2y(t ￾ 2) ￾ ::: ￾ any(t ￾ n) + b0u(t ￾ d0) + ::: + bmu(t ￾ d0 ￾ m) (9) Introducing  T = ( a1 a2 ::: an b0 ::: bm ) ' T (t ￾ 1) = (￾y(t ￾ 1) ￾ y(t ￾ n) u(t ￾ d0) : : :u(t ￾ d0 ￾ m)) (10) The model becomes a regression y(t) = 'T (t ￾ 1) Estimates given by ^ (t) = ^ (t ￾ 1) + K(t)"(t) "(t) = y(t) ￾ 'T (t ￾ 1)^ (t ￾ 1) K(t) = P (t ￾ 1)'(t ￾ 1)  + 'T (t ￾ 1)P (t ￾ 1)'(t ￾ 1) P (t) = 1  ￾ I ￾ K(t)'T (t ￾ 1) P (t ￾ 1) (11) c K. J. Åström and B. Wittenmark 4

t STR EXam ple 3. 4-Cancellation of ze ro 1. Data Aoa nd amand n 2. Est imate para mEt ers of modd by Rls Process mode 3. Obtain pdy nomials R and sby sov,ing Diopha n ine Eq uation y(t)+a1y(t-1)+a2y(t-2) 4. Compute Pdy nomial T= AoBm bou(t-1)+b1u(t-2) 5. Compute cont rd sigNal from Contrd law R (t)+miu(t-1)=touct-soy(t)-siy(t-1) 6. Goto 2 latio n EXam ple 3.5- No Cancellat io n Process mode y()+a1y(t-1)+a2y(t-2) bou(t-1)+b1u(t-2) u(t)+riu(t-1)= touc(t)-soy(t C K.J. Astrom and BWittenmark

An Indirect STR 1. Data Ao and Am and n 2. Estimate parameters of model by RLS 3. Obtain polynomials R and S by solving Diophantine Equation 4. Compute Polynomial T = AoB0m 5. Compute control signal from Ru = T uc ￾ Sy 6. Go to 2 Example 3.4 - Cancellation of Zero Process model y(t) + a1y(t ￾ 1) + a2y(t ￾ 2) = b0u(t ￾ 1) + b1u(t ￾ 2) Control law u(t) + r1u(t ￾ 1) = t0uc(t) ￾ s0y(t) ￾ s1y(t ￾ 1) Simulation 0 20 40 60 80 100 −1 0 1 0 20 40 60 80 100 −4 −2 0 2 Time Time uc y u 0 5 10 15 20 −2 −1 0 0 5 10 15 20 0.0 0.1 0.2 Time Time ^a2 ^a1 ^ b1 ^ b0 Example 3.5 - No Cancellation Process model y(t) + a1y(t ￾ 1) + a2y(t ￾ 2) = b0u(t ￾ 1) + b1u(t ￾ 2) Control law u(t) + r1u(t ￾ 1) = t0uc(t) ￾ s0y(t) ￾ s1y(t ￾ 1) c K. J. Åström and B. Wittenmark 5

Simulation Simulation P, G(s ao-2 polynomial Ads)=s+aowit h Controller struct ure u(t) y(t)+ to(p+ao (12) So 14 (15)

Simulation 0 20 40 60 80 100 −1 0 1 0 20 40 60 80 100 −4 −2 0 2 Time Time uc y u 0 100 200 300 400 500 −2 −1 0 0 100 200 300 400 500 0.0 0.1 0.2 Time Time ^a2 ^a1 ^ b1 ^ b0 Simulation Process G(s) = b s(s + a) Desired response Gm(s) = !2 s2 + 2!s + !2 Observer polynomial Ao(s) = s + ao with ao = 2. Controller structure u(t) = ￾ s0p + s1 p + r1 y(t) + t0(p + ao) p + r1 uc(t) where r1 = 2! + ao ￾ a (12) s0 = ao2! + !2 ￾ ar1 b (13) s1 = !2ao b (14) t0 = !2 b (15) c K. J. Åström and B. Wittenmark 6

点击下载完整版文档(PDF)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
已到末页,全文结束
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有