第十章练习题参考解答 练习题 10.1下表是某国的宏观经济数据(GDP一一国内生产总值,单位:10亿美元;PD 个人可支配收入,单位:10亿美元;PCE一一个人消费支出,单位:10亿美元:利润一一公 司税后利润,单位:10亿美元:红利一一公司净红利支出,单位:10亿美元) 某国1980年到2001年宏观经济季度数据 季度GDP|PD1PCE利润红利季度 GDP PDI PCE利润|红利 an-80287881990.61800.544.724.5Jan913860.52783.72475.51593564 Feb-80286032020.11087.5444239Feb-9138444277672476143.7684 Mar-80289662045.318247449233Mar-913864.52814124874147671.9 Ap-802873.7204521821.242.1|23.1|Apr-913803.12808.82468.8140.3724 Jan-81|2942.92073918499488|238Jan-923756.1|2795248414470 Feb8129474|2098186535507237Feb.|371:1282482489114684 Mar-812966210661876954223.8Mar-92375442829250251146692 Apr81|298082121119046557237|Ap9237596|283261253931099725 Jan-8230373212971929359425Jan9337833284362565113677 Fcb-8230897214911963.360.12.5Feb-933886.528672604133 80.5 Mar-823125.821939198.162.826.1|Ma93|3944429032639145.7831 Apr823175.3222032.168326|Ap-93401212960626782141.6842 Ja-833253.3|2300.72063979.127Jan944221.83123.62824.3125.287.2 Feb-833267623152206281.2|27.8Feb94144306592741152.6822 Mar-83 43233792073.781.328.3Mar-94416643102.727546141.881.7 Ap-833289.1238272067485 294|Apr-944194.2|311852784.8136.3834 Jan-84|3259423372050.889 98Jan-954221.831236282491252872 Feb-84326772304.5205991.2304Feb-9542548318962849.7124890.8 Aar-843239.123152065.597.1 Mar-9543093156.52893.3129894.1 Apr-8432264231372039986830.Apr-954335317872895.3134974 an853154225205183830an949053752922410210511 Febt8531904239032086981 Feb964387732 Mar-8532499235442114497.830.1Mar-964412.6327262993411112.3 Ap8s|3y092523894213710343061Ap964271132662|3025192111 Jan-86|3356724245217931084|326Jan-974460329523011.5140.2|108 Feb-86336922434921947109235Feb-97451533241.73045.81579105.5 Mar-863381244472213 10 366Mar-97455933285730758169.1105.1 Aprs634163245952242103383|Ap-9746255133358307461761063 an-872466424632271.3121.5392|Jan-9846533380.13128.2195.51096 Feb87352524903|28.8129740 Fcb-984704833863314782072113.3 Mmsx354254120261s544M-s47341|31n623417s
第十章练习题参考解答 练习题 10.1 下表是某国的宏观经济数据(GDP——国内生产总值,单位:10 亿美元;PDI—— 个人可支配收入,单位:10 亿美元;PCE——个人消费支出,单位:10 亿美元;利润——公 司税后利润,单位:10 亿美元;红利——公司净红利支出,单位:10 亿美元)。 某国 1980 年到 2001 年宏观经济季度数据 季度 GDP PDI PCE 利润 红利 季度 GDP PDI PCE 利润 红利 Jan-80 2878.8 1990.6 1800.5 44.7 24.5 Jan-91 3860.5 2783.7 2475.5 159.35 64 Feb-80 2860.3 2020.1 1087.5 44.4 23.9 Feb-91 3844.4 2776.7 2476.1 143.7 68.4 Mar-80 2896.6 2045.3 1824.7 44.9 23.3 Mar-91 3864.5 2814.1 2487.4 147.6 71.9 Apr-80 2873.7 2045.2 1821.2 42.1 23.1 Apr-91 3803.1 2808.8 2468.8 140.3 72.4 Jan-81 2942.9 2073.9 1849.9 48.8 23.8 Jan-92 3756.1 2795 2484 114.4 70 Feb-81 2947.4 2098 1863.5 50.7 23.7 Feb-92 3771.1 2824.8 2488.9 114 68.4 Mar-81 2966 2106.6 1876.9 54.2 23.8 Mar-92 3754.4 2829 2502.5 114.6 69.2 Apr-81 2980.8 2121.1 1904.6 55.7 23.7 Apr-92 3759.6 2832.6 2539.3 109.9 72.5 Jan-82 3037.3 2129.7 1929.3 59.4 25 Jan-93 3783.3 2843.6 2556.5 113.6 77 Feb-82 3089.7 2149.1 1963.3 60.1 25.5 Feb-93 3886.5 2867 2604 133 80.5 Mar-82 3125.8 2193.9 1989.1 62.8 26.1 Mar-93 3944.4 2903 2639 145.7 83.1 Apr-82 3175.3 2272 2032.1 68.3 26.5 Apr-93 4012.1 2960.6 2678.2 141.6 84.2 Jan-83 3253.3 2300.7 2063.9 79.1 27 Jan-94 4221.8 3123.6 2824.3 125.2 87.2 Feb-83 3267.6 2315.2 2062 81.2 27.8 Feb-94 4144 3065.9 2741 152.6 82.2 Mar-83 3264.3 2337.9 2073.7 81.3 28.3 Mar-94 4166.4 3102.7 2754.6 141.8 81.7 Apr-83 3289.1 2382.7 2067.4 85 29.4 Apr-94 4194.2 3118.5 2784.8 136.3 83.4 Jan-84 3259.4 2334.7 2050.8 89 29.8 Jan-95 4221.8 3123.6 2824.9 125.2 87.2 Feb-84 3267.7 2304.5 2059 91.2 30.4 Feb-95 4254.8 3189.6 2849.7 124.8 90.8 Mar-84 3239.1 2315 2065.5 97.1 30.9 Mar-95 4309 3156.5 2893.3 129.8 94.1 Apr-84 3226.4 2313.7 2039.9 86.8 30.5 Apr-95 4333.5 3178.7 2895.3 134 97.4 Jan-85 3154 2282.5 2051.8 75.8 30 Jan-96 4390.5 3227.5 2922.4 109.2 105.1 Feb-85 3190.4 2390.3 2086.9 81 29.7 Feb-96 4387.7 3281.4 2947.9 106 110.7 Mar-85 3249.9 2354.4 2114.4 97.8 30.1 Mar-96 4412.6 3272.6 2993.4 111 112.3 Apr-85 3292.5 2389.4 2137 103.4 30.6 Apr-96 4427.1 3266.2 3012.5 119.2 111 Jan-86 3356.7 2424.5 2179.3 108.4 32.6 Jan-97 4460 3295.2 3011.5 140.2 108 Feb-86 3369.2 2434.9 2194.7 109.2 35 Feb-97 4515.3 3241.7 3045.8 157.9 105.5 Mar-86 3381 2444.7 2213 110 36.6 Mar-97 4559.3 3285.7 3075.8 169.1 105.1 Apr-86 3416.3 2459.5 2242 110.3 38.3 Apr-97 4625.5 3335.8 3074.6 176 106.3 Jan-87 2466.4 2463 2271.3 121.5 39.2 Jan-98 4655.3 3380.1 3128.2 195.5 109.6 Feb-87 3525 2490.3 2280.8 129.7 40 Feb-98 4704.8 3386.3 3147.8 207.2 113.3 Mar-87 3574.4 2541 2302.6 135.1 41.4 Mar-98 4779.7 3443.1 3170.6 213.4 117.5
Apr87356722556223361348424|Ap-9847773473932029226121 Jan-883591825873234711375435Jan-9480983473932009221.31246 Feb-883707726319234154|445Feb94832434509320862062|127 Mar-8837356265322404.5158 466|Mar-99484563446.93241.1195.7129 Ap8837.62680924261678489Apr.4859734933241.62031307 Jan893780.82699224379168250.5Jan-004880.835314325881991132.3 Feb-8937843269762435.4174151.8Feb-004832.4|3545332586193.7132.5 Mar8938075271532454717812.7Ma-004903335473281.219631338 Apr-89381462728.1246541734|576Apr-004855.13529532518199 136.2 Jan903830.82742.9246461743|576Jan-0148243514.83241.1189.71378 Feb-9037326269224142144.5587Feb-0148407353743252418271367 Aar-903733.52722.52440.3151 59.3Mar-014862735399327121896138.1 Ap:901380851277246921546160.51Ap414868135475|3271.1|19031385 (1)画出利润和红利的散点图,并直观地考察这两个时间序列是否是平稳的。 (2)应用单位根检验分别检验两个时间序列是否是平稳的 10.2下表数据是1970-191年美国制造业固定厂房设备投资Y和销售量X,以10亿美元 计价,且经过季节调整,根据该数据,判断厂房开支和销售量序列是否平稳? 年份固定厂房设备 销售量年份 固定厂房设备 销售量 投资 投资 1970 52.805 128.68 1971 33.6 55.906 1982 123.97 163.351 1972 35.42 63.027 1983 117.35 172.547 1973 42.35 72.027 1984 139.61 190.682 1974 84.79 1985 182.88 194.538 1975 53.66 137.95 194.657 1976 58.53 98.797 1987 141.06 206.326 1977 67.48 113.201 1988 163.45 223.541 1978 78.13 126.905 183. 232.724 1979 95.13 143.936 1990 192.61 239.459 1980 112.6 154.39 1991 182.81 235.142 10.3根据习题10.1的数据,回答如下问题 (1)如果利润和红利时间序列并不是平稳的,而如果你以利润来回归红利,那么回归 的结果会是虚假的吗?为什么?你是如何判定的,说明必要的计算。 (2)取利润和红利两个时间序列的一阶差分,确定一阶差分时间序列是否是平稳的。 10.4从《中国统计年鉴》中取得1978年-2005年全国全社会固定资产投资额的时间序
Apr-87 3567.2 2556.2 2331.6 134.8 42.4 Apr-98 4779.7 3473.9 3202.9 226 121 Jan-88 3591.8 2587.3 2347.1 137.5 43.5 Jan-99 4809.8 3473.9 3200.9 221.3 124.6 Feb-88 3707.7 2631.9 2394 154 44.5 Feb-99 4832.4 3450.9 3208.6 206.2 127 Mar-88 3735.6 2653.2 2404.5 158 46.6 Mar-99 4845.6 3446.9 3241.1 195.7 129 Apr-88 3779.6 2680.9 2421.6 167.8 48.9 Apr-99 4859.7 3493 3241.6 203 130.7 Jan-89 3780.8 2699.2 2437.9 168.2 50.5 Jan-00 4880.8 3531.4 3258.8 199.1 132.3 Feb-89 3784.3 2697.6 2435.4 174.1 51.8 Feb-00 4832.4 3545.3 3258.6 193.7 132.5 Mar-89 3807.5 2715.3 2454.7 178.1 52.7 Mar-00 4903.3 3547 3281.2 196.3 133.8 Apr-89 3814.6 2728.1 2465.4 173.4 57.6 Apr-00 4855.1 3529.5 3251.8 199 136.2 Jan-90 3830.8 2742.9 2464.6 174.3 57.6 Jan-01 4824 3514.8 3241.1 189.7 137.8 Feb-90 3732.6 2692 2414.2 144.5 58.7 Feb-01 4840.7 3537.4 3252.4 182.7 136.7 Mar-90 3733.5 2722.5 2440.3 151 59.3 Mar-01 4862.7 3539.9 3271.2 189.6 138.1 Apr-90 3808.5 2777 2469.2 154.6 60.5 Apr-01 4868 3547.5 3271.1 190.3 138.5 (1) 画出利润和红利的散点图,并直观地考察这两个时间序列是否是平稳的。 (2) 应用单位根检验分别检验两个时间序列是否是平稳的。 10.2 下表数据是 1970-1991 年美国制造业固定厂房设备投资 Y 和销售量 X,以 10 亿美元 计价,且经过季节调整,根据该数据,判断厂房开支和销售量序列是否平稳? 年份 固定厂房设备 投资 销售量 年份 固定厂房设备 投资 销售量 1970 36.99 52.805 1981 128.68 168.129 1971 33.6 55.906 1982 123.97 163.351 1972 35.42 63.027 1983 117.35 172.547 1973 42.35 72.027 1984 139.61 190.682 1974 52.48 84.79 1985 182.88 194.538 1975 53.66 86.589 1986 137.95 194.657 1976 58.53 98.797 1987 141.06 206.326 1977 67.48 113.201 1988 163.45 223.541 1978 78.13 126.905 1989 183.8 232.724 1979 95.13 143.936 1990 192.61 239.459 1980 112.6 154.39 1991 182.81 235.142 10.3 根据习题 10.1 的数据,回答如下问题: (1) 如果利润和红利时间序列并不是平稳的,而如果你以利润来回归红利,那么回归 的结果会是虚假的吗?为什么?你是如何判定的,说明必要的计算。 (2) 取利润和红利两个时间序列的一阶差分,确定一阶差分时间序列是否是平稳的。 10.4 从《中国统计年鉴》中取得 1978 年-2005 年全国全社会固定资产投资额的时间序
列数据,检验其是否平稳,并确定其单整阶数 10.5下表是1978-2003年中国财政收入Y和税收X的数据(单位:亿元),判断lnY 和lnX的平稳性,如果是同阶单整的,检验它们之间是否存在协整关系,如果协整,则建立 相应的协整模型 财政收入 度 税收X年度 财政收入 税收X □19781322651928199562422698 1980 1159.93 571.7 1996 740799690982 2004.822040.79 8651.148234 2664.9 2727.4 1998 98759592628 199029371282186199911444081068258 19913149,482990172000133952312581.51 348337329691 2001 16386041530138 1993 4348954255320021890364163645 1994 5218.1 5126.88 200321715.2520017.31 (1)10.6下表是某地区消费模型建立所需的数据,对实际人均年消费支出C和人均 年收人Y(单位:元) 人均消费人均年收 人均消费人均年收 年份 年份 支出C人 支出C 92.28 151.20 1971 151.20 274.08 1951 165.601972163.20 286.68 105.00 182.40 1973 165.00 288.00 1953 118.08198.48 1974 170.52 293.52 1954121.92203.64 1975 170.16 301.92 1955 132.9621.68 1976 177.36 313.80 1956 123.84 206.28 1977 181.56 330.12 1957 137.88 255.48 1978 00.40 361.44 138.00 226.20 1979 219.60 398.76 1959 145.08236.88 260.76491.76 43.04 245.40 1981 271.08 1961 155.40240.00 1982 290.28 29.20 1962 144.24 234.84 1983 318.48 522.72 671.16 1964136.20238.5 1985 418.92 811.80 1965 141.12 239.88 1986 517.56 988.44 1966 132.84 239.04 1987577.921094.64
列数据,检验其是否平稳,并确定其单整阶数。 10.5 下表是 1978-2003 年中国财政收入 Y 和税收 X 的数据(单位:亿元),判断 lnY 和 lnX 的平稳性,如果是同阶单整的,检验它们之间是否存在协整关系,如果协整,则建立 相应的协整模型。 年度 财政收入 Y 税收 X 年度 财政收入 Y 税收 X 1978 1132.26 519.28 1995 6242.2 6038.04 1980 1159.93 571.7 1996 7407.99 6909.82 1985 2004.82 2040.79 1997 8651.14 8234.04 1989 2664.9 2727.4 1998 9875.95 9262.8 1990 2937.1 2821.86 1999 11444.08 10682.58 1991 3149.48 2990.17 2000 13395.23 12581.51 1992 3483.37 3296.91 2001 16386.04 15301.38 1993 4348.95 4255.3 2002 18903.64 17636.45 1994 5218.1 5126.88 2003 21715.25 20017.31 (1) 10.6 下表是某地区消费模型建立所需的数据,对实际人均年消费支出 C 和人均 年收人 Y(单位:元) 年份 人均消费 支出 C 人均年收 人 Y 年份 人均消费 支出 C 人均年收 人 Y 1950 92.28 151.20 1971 151.20 274.08 1951 97.92 165.60 1972 163.20 286.68 1952 105.00 182.40 1973 165.00 288.00 1953 118.08 198.48 1974 170.52 293.52 1954 121.92 203.64 1975 170.16 301.92 1955 132.96 211.68 1976 177.36 313.80 1956 123.84 206.28 1977 181.56 330.12 1957 137.88 255.48 1978 200.40 361.44 1958 138.00 226.20 1979 219.60 398.76 1959 145.08 236.88 1980 260.76 491.76 1960 143.04 245.40 1981 271.08 501.00 1961 155.40 240.00 1982 290.28 529.20 1962 144.24 234.84 1983 318.48 522.72 1963 132.72 232.68 1984 365.40 671.16 1964 136.20 238.56 1985 418.92 811.80 1965 141.12 239.88 1986 517.56 988.44 1966 132.84 239.04 1987 577.92 1094.64
139.20 655.761231.80 140.76 239.40 756.241374.60 1969 133.56 248.04 1990 833.76152.20 1970 144.60 261.48 分别取对数,得到l和y (2)对lc和进行平稳性检验 (3)用EG两步检验法对lc和y进行协整性检验并建立误差修正模型。 分析该模型的经济意义 练习题参考解答 练习题10.1参考解答 利润和红利的散点图如下 420 160 120 L--BNU 从图中看出,利润和红利序列存在趋势,均值和方差不稳定,因此可能非平稳。下面用 ADF检验是否平稳。选择带截距和时间趋势的模型进行估计,结果如下: Null Hypothesis: PF T has a unit root Exogenous: Constant, Linear Trend Lag Length: 0(Automatic based on SIC, MAXLAG=11) t-statistic Prob Augmented Dickey-Fuller test statistic 17970790.6978 Test critical values 1%level 3.462292 10% level 3.157475
1967 139.20 237.48 1988 655.76 1231.80 1968 140.76 239.40 1989 756.24 1374.60 1969 133.56 248.04 1990 833.76 1522.20 1970 144.60 261.48 分别取对数,得到 lc ly 和 : (2) 对 lc ly 和 进行平稳性检验。 (3) 用 EG 两步检验法对 lc ly 和 进行协整性检验并建立误差修正模型。 分析该模型的经济意义。 练习题参考解答 练习题 10.1 参考解答 利润和红利的散点图如下: 40 80 120 160 200 240 80 82 84 86 88 90 92 94 96 98 00 PFT 20 40 60 80 100 120 140 80 82 84 86 88 90 92 94 96 98 00 BNU 从图中看出,利润和红利序列存在趋势,均值和方差不稳定,因此可能非平稳。下面用 ADF 检验是否平稳。选择带截距和时间趋势的模型进行估计,结果如下: Null Hypothesis: PFT has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic based on SIC, MAXLAG=11) t-Statistic Prob.* Augmented Dickey-Fuller test statistic -1.797079 0.6978 Test critical values: 1% level -4.066981 5% level -3.462292 10% level -3.157475
MacKinnon(1996)one-sided p-values Dependent Variable: D(PFT) Method: Least Squares Sample(adjusted ): 1980Q2 2001Q4 Included observations: 87 after adjustments Variable Coefficient Std Error t-Statistic Prob PFT(-1) -0.0722110.04018 6.9586083.1976892.1761 @ TREND(1980Q1)0.0936840.0763551.2269520.2233 R-squared 0.040009 Mean dependent var 1.673563 Adjusted R-squared 0.017152 S.D. dependent var S.E. of regression 9.703787 Akaike info criterion 7.41678 Sum squared resid 7909 732 Schwarz criterion -319. 6301 F-statistic Durbin-Watson stat 1.613622 Prob(F-statistic) 0.17997 Null Hypothesis: BNU has a unit root Exogenous: Constant, Linear Trend Lag Length: 1(Automatic based on SIC, MAXLAG=11) t-Statistic Prob.* Aug mented Dickey-Fuller test statistic -2.893559 0.1698 Test critical values 1% level -4.068290 5% level -3.462912 10% level -3.157836 MacKinnon(1996)one-sided p-values Augmented Dickey-Fuller Test Equation Dependent Variable: D(BNU) Method: Least Squares Date:07/23/05Tme:12:04 Sample(adjusted ): 1980Q3 2001Q4 Included observations: 86 after adjustments
*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(PFT) Method: Least Squares Date: 07/23/05 Time: 11:59 Sample (adjusted): 1980Q2 2001Q4 Included observations: 87 after adjustments Variable Coefficient Std. Error t-Statistic Prob. PFT(-1) -0.072211 0.040182 -1.797079 0.0759 C 6.958608 3.197689 2.176136 0.0324 @TREND(1980Q1) 0.093684 0.076355 1.226952 0.2233 R-squared 0.040009 Mean dependent var 1.673563 Adjusted R-squared 0.017152 S.D. dependent var 9.788094 S.E. of regression 9.703787 Akaike info criterion 7.416784 Sum squared resid 7909.732 Schwarz criterion 7.501815 Log likelihood -319.6301 F-statistic 1.750424 Durbin-Watson stat 1.613622 Prob(F-statistic) 0.179976 Null Hypothesis: BNU has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic based on SIC, MAXLAG=11) t-Statistic Prob.* Augmented Dickey-Fuller test statistic -2.893559 0.1698 Test critical values: 1% level -4.068290 5% level -3.462912 10% level -3.157836 *MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(BNU) Method: Least Squares Date: 07/23/05 Time: 12:04 Sample (adjusted): 1980Q3 2001Q4 Included observations: 86 after adjustments
Variable Coefficient Std Error t-Statistic Prob BNU(-1) -0.0667520.023069-2.8935590.00 D(BNU(1) 0.5268290.089512 5.8855570.0000 04884830.3491361.3991170.165 @ TREND(1980Q1)0.1067690.03498430519430003 R-squared 0.386247 Mean dependent var 1332558 Adjusted R-squared 0.363793 S.D. dependent var 1.93064 S.E. of regression 1.539934 Akaike info criterion 3.746751 Sum squared resid 194.4546 Schwarz criterion 157.1103 F-statistic Durbin-Watson stat 1.859383 Prob(F-statistic) 0.00000 由上表可知,利润和红利的t统计量值是大于显著性水平为10%的临界值,不能拒绝原假设 表明序列是非平稳的。 练习题10.3参考解答 根据习题10.1的数据,回答如下问题: (1)如果利润和红利时间序列并不是平稳的,而如果你以利润来回归红利,那么回归 的结果会是虚假的吗?为什么?你是如何判定的,说明必要的计算 (2)取利润和红利两个时间序列的一阶差分,确定一阶差分时间序列是否是平稳的 解答:(1)回归的结果是虚假的。以利润回归红利,得到下面的结果: Dependent Variable: BNU ethod: Least Squares Date:07/23/05Tme:12:09 Sample: 1980Q1 2001 Included observations Variable Coefficient Std error t-statistic Prob 13026447371237-176719800807 PET 0.6282190.05286611.883120.0000 0.621493 Mean dependent var 69.2420 0.617092 S.D. depender S.E. of regressio 23.74163 Akaike info criterion 9.194802 Sum squared resid 48475. 19 Schwarz criterion 9251105
Variable Coefficient Std. Error t-Statistic Prob. BNU(-1) -0.066752 0.023069 -2.893559 0.0049 D(BNU(-1)) 0.526829 0.089512 5.885557 0.0000 C 0.488483 0.349136 1.399117 0.1655 @TREND(1980Q1) 0.106769 0.034984 3.051943 0.0031 R-squared 0.386247 Mean dependent var 1.332558 Adjusted R-squared 0.363793 S.D. dependent var 1.930647 S.E. of regression 1.539934 Akaike info criterion 3.746751 Sum squared resid 194.4546 Schwarz criterion 3.860907 Log likelihood -157.1103 F-statistic 17.20143 Durbin-Watson stat 1.859383 Prob(F-statistic) 0.000000 由上表可知,利润和红利的 t 统计量值是大于显著性水平为 10%的临界值,不能拒绝原假设, 表明序列是非平稳的。 练习题 10.3 参考解答 根据习题 10.1 的数据,回答如下问题: (1) 如果利润和红利时间序列并不是平稳的,而如果你以利润来回归红利,那么回归 的结果会是虚假的吗?为什么?你是如何判定的,说明必要的计算。 (2) 取利润和红利两个时间序列的一阶差分,确定一阶差分时间序列是否是平稳的。 解答:(1)回归的结果是虚假的。以利润回归红利,得到下面的结果: Dependent Variable: BNU Method: Least Squares Date: 07/23/05 Time: 12:09 Sample: 1980Q1 2001Q4 Included observations: 88 Variable Coefficient Std. Error t-Statistic Prob. C -13.02644 7.371237 -1.767198 0.0807 PFT 0.628219 0.052866 11.88312 0.0000 R-squared 0.621493 Mean dependent var 69.24205 Adjusted R-squared 0.617092 S.D. dependent var 38.36748 S.E. of regression 23.74163 Akaike info criterion 9.194802 Sum squared resid 48475.19 Schwarz criterion 9.251105
Log likelihood -402.5713 F-statistic 1412085 Durbin-Watson stat 0.083355 Prob(F-statistic 0.000000 因为R2=0.6215远大于DW值d=0.0834,残差序列非平稳,说明存在伪回归。 (2)对利润和红利取一阶差分,得以下面结果 Null Hypothesis: D(PFT) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0(Automatic based on SIC, MAXLAG=11) t-statistic Dickey-Fuller test statistic 77181000.0000 Test I values 1% level -4.068290 5% level 3.462912 10% level 3.157836 MacKinnon(1996)one-sided p-values Augmented Dickey-Fuller Test Equation Dependent Variable: D(PF T, 2) Method: Least Squares Date:07/2305Time:12:22 Sample(adjusted): 1980Q3 2001Q4 Included observations: 86 af ter adjustments Variable Coefficient Std Error t-statistic Prob D(PFT(-1)) -08351150.10820277181000.0000 C 23269212189343106284002909 @ TREND(1980Q1)0.0204090.0426610.4784110.63 R-squared 0. 417839 Mean dependent var 01162 Adjusted R-squared 0.403811 S.D. dependent var S.E. of regression 9. 806382 Akaike info criterion Sum squared resid Schwarz criterion 7.523821 Log likelihood 316 8428 F-statistic Durbin-Watson stat 1.995853 Prob(F-statistic) 0.000000 Null Hypothesis: D(BNU) has a unit root
Log likelihood -402.5713 F-statistic 141.2085 Durbin-Watson stat 0.083355 Prob(F-statistic) 0.000000 因为 0.6215 2 R = 远大于 DW 值 d = 0.0834 ,残差序列非平稳,说明存在伪回归。 (2)对利润和红利取一阶差分,得以下面结果: Null Hypothesis: D(PFT) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic based on SIC, MAXLAG=11) t-Statistic Prob.* Augmented Dickey-Fuller test statistic -7.718100 0.0000 Test critical values: 1% level -4.068290 5% level -3.462912 10% level -3.157836 *MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(PFT,2) Method: Least Squares Date: 07/23/05 Time: 12:22 Sample (adjusted): 1980Q3 2001Q4 Included observations: 86 after adjustments Variable Coefficient Std. Error t-Statistic Prob. D(PFT(-1)) -0.835115 0.108202 -7.718100 0.0000 C 2.326921 2.189343 1.062840 0.2909 @TREND(1980Q1) -0.020409 0.042661 -0.478411 0.6336 R-squared 0.417839 Mean dependent var 0.011628 Adjusted R-squared 0.403811 S.D. dependent var 12.70039 S.E. of regression 9.806382 Akaike info criterion 7.438205 Sum squared resid 7981.706 Schwarz criterion 7.523821 Log likelihood -316.8428 F-statistic 29.78615 Durbin-Watson stat 1.995853 Prob(F-statistic) 0.000000 Null Hypothesis: D(BNU) has a unit root
Exogenous: Constant, Linear Trend Lag Length: 2(Automatic based on SIC, MAXLAG=11) t-statistic Prob Augmented Dickey-Fuller test statistic -6.233567 0.0000 Test critical values 1%level -4.071006 5% level 10% level -3.1585 MacKinnon(1996)one-sided p-values Augmented Dickey-Fuller Test Equation Dependent Variable: D(BNU, 2) Date:07/23/05Tme:12:23 Sample(adjusted): 1981Q1 2001Q4 Included observations: 84 af ter adjustments Variable Coefficient Std Error t-statistic Prob D(BNU(1) -0.7434640.1192686.2335670.000 D(BNU(-1),2) 02961730.11289626234120.0104 D(BNU-2),2) 0.3445050.1090163.1601280.0022 0.3832340.35 @ TREND(1980Q1)0.0139560.0073741.8925170.0621 R-squared 0. 338294 Mean dependent var 0.00714 Adjusted R-squared 0.304790 S.D.dependent var 1.83433 1.529451 Akaike info criterion 3.7453 Sum squared resid 184. 7984 Schwarz criterion -152.3057 F-statistic 1009710 Durbin-Watson stat 2.058616 Prob(F-statistic) 0.000001 从检验结果看,在1%、5%、10%三个显著性水平下,t检验统计量值均小于相应临界 值,从而拒绝H,表明利润和红利的差分序列不存在单位根,是平稳序列。即两个序列是 阶单整的 练习题10.5参考解答 首先判断lnY和lnX的平稳性
Exogenous: Constant, Linear Trend Lag Length: 2 (Automatic based on SIC, MAXLAG=11) t-Statistic Prob.* Augmented Dickey-Fuller test statistic -6.233567 0.0000 Test critical values: 1% level -4.071006 5% level -3.464198 10% level -3.158586 *MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(BNU,2) Method: Least Squares Date: 07/23/05 Time: 12:23 Sample (adjusted): 1981Q1 2001Q4 Included observations: 84 after adjustments Variable Coefficient Std. Error t-Statistic Prob. D(BNU(-1)) -0.743464 0.119268 -6.233567 0.0000 D(BNU(-1),2) 0.296173 0.112896 2.623412 0.0104 D(BNU(-2),2) 0.344505 0.109016 3.160128 0.0022 C 0.383234 0.357872 1.070870 0.2875 @TREND(1980Q1) 0.013956 0.007374 1.892517 0.0621 R-squared 0.338294 Mean dependent var 0.007143 Adjusted R-squared 0.304790 S.D. dependent var 1.834330 S.E. of regression 1.529451 Akaike info criterion 3.745373 Sum squared resid 184.7984 Schwarz criterion 3.890065 Log likelihood -152.3057 F-statistic 10.09710 Durbin-Watson stat 2.058616 Prob(F-statistic) 0.000001 从检验结果看,在 1%、5%、10%三个显著性水平下, t 检验统计量值均小于相应临界 值,从而拒绝 H0 ,表明利润和红利的差分序列不存在单位根,是平稳序列。即两个序列是一 阶单整的。 练习题 10.5 参考解答 首先判断 lnY 和 lnX 的平稳性
Augmented Dickey-Fuller Unit Root Test on LNX ADF Test Statistic 0.139056 1% Critical value* -3.9635 5% Critical value 30818 10%Critical value 26829 Mackinnon critical values for rejection of hypothesis of a unit root Augmented Dickey-Fuller Unit Root Test on LNY ADF Test Statistic 0. 309377 1% Critical value* -3.9535 5% Critical Value 3.0818 10% Critical value 25829 MacKinnon critical values for rejection of hypothesis of a unit root 由上表可知,lnY和lnX的t统计量值是大于显著性水平为10%的临界值,不能拒绝原 假设,表明序列是非平稳的。对其进行一阶差分,结果如下 Augmented Dickey-Fuller Unit Root Test on D(LNX) ADF Test Statistic -4. 564137 1% Critical value* -4.0113 5% Critical val 3.1003 10% Critical∨a|ue 2.5927 Mackinnon critical values for rejection of hypothesis of a unit root Augmented Dickey-Fuller Unit Root Test on D(LNY) ADF Test Statistic -5.201644 1% Critical value* -4.0113 5% Critical value 10% Critical value 28927 MacKinnon critical values for rejection of hypothesis of a unit root 可见lnY和lnX都是一阶单整的,可以进行协整性分析。下面进行协整性分析: 为了lnY和lnX之间是否存在协整关系,我们先作两变量之间的回归,然后检验回归残差 的平稳性。 Dependent Variable: LNY Method: Least Squares Date:07/21/05Tme:14:38 Sample(adjusted): 1978 1995 Included observations: 18 after adjusting endpoints Variable Coefficient Std Error t-Statistic Prob 1.39249103371084.1306900.000 LNX 0.8503690.03942521.569210.000 R-squared 0.966752 Mean dependent var 8.611693 Adjusted R-squared 0.964674 S.D. dependent var 0.908082 S.E. of regression 0.170676 Akaike info criterion -0.59365 Sum squared resid 0466086Sch -049472
由上表可知,lnY 和 lnX 的 t 统计量值是大于显著性水平为 10%的临界值,不能拒绝原 假设,表明序列是非平稳的。对其进行一阶差分,结果如下: 可见 lnY 和 lnX 都是一阶单整的,可以进行协整性分析。下面进行协整性分析: 为了 lnY 和 lnX 之间是否存在协整关系,我们先作两变量之间的回归,然后检验回归残差 的平稳性。 Dependent Variable: LNY Method: Least Squares Date: 07/21/05 Time: 14:38 Sample(adjusted): 1978 1995 Included observations: 18 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C 1.392491 0.337108 4.130690 0.0008 LNX 0.850369 0.039425 21.56921 0.0000 R-squared 0.966752 Mean dependent var 8.611693 Adjusted R-squared 0.964674 S.D. dependent var 0.908082 S.E. of regression 0.170676 Akaike info criterion -0.593657 Sum squared resid 0.466086 Schwarz criterion -0.494727
Log likelihood 7. 342914 F-statistic 465.230 Durbin-Watson stat 0.657467 Prob(F-statistic) 0.000000 估计的回归模型为:hnY=1.392490536+0.8503691793*nx+1 下面检查残差的平稳性: ADF Test statistic 4418562 Critical Value 2.71583455574 Critical Value 196271170588 10% Critical Value 1.62624704838 从t统计量的结果看,t值大于显著性水平为1%时的临界值,小于显著性水平为5%的临界 值,说明在5%的显著性水平性我们可以拒绝原假设,即在5%的显著性水平性不存在单位根, 也就是说残差序列此时是平稳的。说明lnY和lnX具有协整性关系
Log likelihood 7.342914 F-statistic 465.2306 Durbin-Watson stat 0.657467 Prob(F-statistic) 0.000000 估计的回归模型为: t lnY= 1.392490536 + 0.8503691793*lnX+ 下面检查残差的平稳性: ADF Test Statistic -2.441856281 1% Critical Value* -2.71583455574 5% Critical Value -1.96271170588 10% Critical Value -1.62624704838 从 t 统计量的结果看,t 值大于显著性水平为 1%时的临界值,小于显著性水平为 5%的临界 值,说明在 5%的显著性水平性我们可以拒绝原假设,即在 5%的显著性水平性不存在单位根, 也就是说残差序列此时是平稳的。说明 lnY 和 lnX 具有协整性关系