当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.4-Gears

资源类别:文库,文档格式:PPT,文档页数:42,文件大小:3.13MB,团购合买
点击下载完整版文档(PPT)

3.4 Gears and cam-followers 3.4.1 Gears Gear teeth on the periphery of the gears cause pitch circles to roll relative to each other without slip

3.4 Gears and cam-followers 3.4.1 Gears Gear teeth on the periphery of the gears cause pitch circles to roll relative to each other without slip

3.4.1 Gears 1.Outer meshing gear The arc lengths DO,and DO are equal. ↑9 1=0,Q,and Ocoincide a,R,=a R O,and are fixed points on y B;and Bi,0,e,are constant x+0=p+8 a,=4+0-0 R,(,+0,)+R+0)Rπ C%=-(9+0-0-π) R+R x,+8,+4=B+π am明一心1用一r收-=0-8 u Ru w-rk-r小m--0 Two constraint Φ》=(-y(G-)-(R+R,}=0 equations

Qi and Qj are fixed points on Bi and Bj,  j  j  j    3.4.1 Gears The arc lengths DQi and DQj are equal. t = 0, Qi and Qj coincide  (    )             j j j i i i   sin   cos   0 ( , )           P i P j P i P j P i P j T g i j u r r  x x  y y i j j i i j  D Qi Qj u  Pj u Pi       0 ( , ) 2     i  j  P i P j T P i P j rd i j  r r r r R R     i j i i i j j j j R R R R R              Two constraint equations x  y  i x  i y  j x  j y  i  j , are constant i   i i iRi   jRj u PiPj //  u  PiPj      0  P i P j T u r r u  Ru           sin cos u 1. Outer meshing gear

s》=ur(-)=-sine6-x)+cos6y-y)=0 R(,+0,)+R,,+日,-Rπ R,+R,, R+R R+R -[-l-8a. (Rg+R,) R+R 》=(-2)+w6-) R+BsB)=0 R,+R a”-w-ra y8)=0 eai-rg

  sin   cos   0 ( , )          P i P j P i P j P i P j T g i j  u r r  x x  y y Since          0 ( , )                    i P j i i i P j j j T i j i i j j P i P j T P i P j T P i P j T g i j R R R R                u r B s r B s u r r u r r u r r   i j i i j j R R R R                               u u u u u                sin cos , cos sin , sin cos     i j i i i j j j j R R R R R             i j i i j j R R R R          The velocity equation is The Jacobians of the constraint with respect to qi and qj are                i j P i i P j P T i i T T g i j R R R i u u B s u r r q ( , )               i j P j i P j P T j j T T g i j R R R j u u B s u r r q ( , )   0 g (i, j) v

W-R4+R)+r'6+B,s4-i-Bs”)=0 R+R -=i,+B功,-片-Bs4,B,=-中,A,B=-4A4 a=8]-加-)=6-y-)=0 un=-化-转年R)w6-k有+R⊙) R+Rj R+R +n'呢+B,y有-日-Bs)-2m6-A+R》 R+R +u(As+2AsP)=0 2m-R4+R)+u'6,24,s-2As)=0 R+R

     0 ( , )               i P j i i i P j j j T i j i i j j P i P j T g i j R R R R            u r B s r B s u r r Differentiating the velocity equation              0 2 2 2 ( , )                             P i i i P j j j T i j i i j j P i P j T i P j i i i P j j j T i j i i j j P i P j T i j i i j j P i P j T g i j R R R R R R R R R R R R u A s As u r r u r B s r B s u r r u r r                                0 2 ( , ) 2 2           P i i i P j j j T i j i i j j P i P j T g i j R R R R u A s A s u r r            And using i j j j i i i P j i i i P j j j P i P r j  r  r  B s    r  B s   , B    A , B    A        u   u       cos sin           0  P i P j T P i P j T u r r  u r r  

2.Inner meshing gear e. R>R The arc lengths DO;and DO,are equal. t=0,O;and coincide &R=&,R O;and Oare fixed points on Ri B;and Bi,0,,are constant a,+0=+8, %=4+0-0 -R(+0)+R(,+0,) ,+B=日,+9 %,=中,+8,-0 -R+R 吧一i1两一心-小-0[调 u=Ru n=r'6--m心-小-g)=0} Two constraint D》=(g-)Y(-)-(R,-R,)=0 equations

Qi and Qj are fixed points on Bi and Bj,  j    j   j The arc lengths DQi and DQj are equal. t = 0, Qi and Qj coincide i i i j j j                 sin   cos   0 ( , )           P i P j P i P j P i P j T g i j u r r  x x  y y i j i j j i  D Qi Qj u  u Pi Pj       2 ( , ) 0 T rd i j P P P P   rj  ri rj  ri  Ri  Rj  i  i i j  j j i j R R R R              Two constraint equations x  y  i x  i y  j x  j y  i  j , are constant i   i i iRi   jRj u PiPj //  u  PiPj      0  P i P j T u r r u  Ru           sin cos u 2. Inner meshing gear D i Ri  Rj Rj Ri

·g -[]*4+4 Number of constraint s=2 9,=(9,9,=69,) q=ag)=(m,5p,) n=6 Degrees of freedom δ=n-S=4 Parameters of the constraint ,js”=(x”y)',s=(y),R,R,0,6

    T T , , , , , , , P P P P P P i i i j j j i j i j i j s  x y s  x y R R   s  2 Degrees of freedom   n  s  4 Number of constraint   T T j j  j q  r Parameters of the constraint   T T i i i q  r     T T T T T T i j i i j  j q  q q  r r n  6 P P i P i P i i i i x y           r r As           ( , ) ( , ) 2 sin cos = P P P P g i j j i j i rd i j T P P P P j i j i i j x x y y R R                            r r r r  0 P P j P j P j j j j x y           r r A s

Rack and pinion If the radius of the gear on body i becomes infinite,a straight gear profile is called a rack,and the gear on body j is called a pinion,and the gear pair is called a rack and pinion

Rack and pinion If the radius of the gear on body i becomes infinite, a straight gear profile is called a rack, and the gear on body j is called a pinion, and the gear pair is called a rack and pinion

Rack and pinion y 1.The pinion is above the rack This pair may be seen as a revolute- translational composite joint with the condition of arc DO=DO Ois fixed point on B,is constant v is fixed point on Bi,is constant P Xi The constraint equation of a revolute- translational composite joint is o=(g-)-R,=0 Two constraint equations are V. The equal arc length condition is s=(-)=Rg, ” where where 0=9+0,0,+a,=2 +0-9 3江+,+0,-4,-日, aj

This pair may be seen as a revolute￾translational composite joint with the condition of arc DQj = DQi i j j j xi yi xj yj  Qj Pj Pi   ( , ) 0 T rt i j i P P j i j i R v       v r r   T i P Q j i j j i s R v     v r r i Qi D Rj The constraint equation of a revolute￾translational composite joint is i v  i v Two constraint equations are s where 3 , 2 i i j j j             ( , ) 0 rt i j T P P i j i i j  v R   v r  r     ( , ) 0 rp i j T P Q i j i i j j   v r  r  v R    The equal arc length condition is where j i  i  j  j        2 3 P i P j r  r Q i P j r  r Rack and pinion 1. The pinion is above the rack Qj is fixed point on Bj,  j is constant vi is fixed point on Bi, is constant i xj

2.The pinion is below the rack This pair may be seen as a revolute- translational composite joint with the condition of arc DO;=DO Ois fixed point on B,is constant v is fixed point on Bi,0 is constant The constraint equation of a revolute- translational composite joint is wn-(-)-R=0 Two constraint equations are The equal arc length condition is s=2(g-)=Ra where ) 0=项+0-元4+0,+a,=0+受 where a,=-7+项+0-4-0

i j j j xi xj yj  Qj Pj i Qi D Rj i v  i v s P i P j r  r Q i P j r  r yi Pi This pair may be seen as a revolute￾translational composite joint with the condition of arc DQj = DQi 2. The pinion is below the rack Qj is fixed point on Bj,  j is constant vi is fixed point on Bi, is constant i The constraint equation of a revolute￾translational composite joint is   ( , ) 0 T rt i j i P P j i j i R v       v r r The equal arc length condition is   T i P Q j i j j i s R v     v r r where , 2 i i j j j             Two constraint equations are   ( , ) 0 rt i j T P P i j i i j  v R   v r  r     ( , ) 0 rp i j T P Q i j i i j j   v r  r  v R    where 2 j i i j j         

o 10 =[ 0x,=c+4+8,-9-0 3π/2,The pinion is above the rack The pinion is below the rack Number of constraint S=2 9=a=(g,p, n=6 Degrees of freedom δ=n-s=4 Parameters of the constraint ij,s=(xy),s=(xy),0=(xy),R,8,c

      T T T , , , , , , , , P P P P P P Q Q Q i i i j j j i i i j i j i j s  x y s  x y s  x y R   c s  2 Degrees of freedom   n  s  4 Number of constraint Parameters of the constraint     T T T T T T i j i i j  j q  q q  r r n  6 P P i P i P i i i i x y           r r As     ( , ) ( , ) = T P P rt i j i j i i j rp i j T T P Q i j i i j j v R v R                         v r r v r r  0 P P j P j P j j j j x y           r r A s Q Q i Q i Q i i i i x y           r r As i i i v  Av j i i j j   c      cos sin i i i           v 3 / 2, The pinion is above the rack / 2, The pinion is below the rack c       

点击下载完整版文档(PPT)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
共42页,可试读14页,点击继续阅读 ↓↓
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有