
概念累次积分换元三重积分$10.3三重积分的概念10.3.1设 V = [a1,bi] × [a2, b2] × [a3,b3] 是 R3 中的三维闭区间。 分别作I;=[ai,bil (i=1,2,3)上的分割Ti : ai = o<ai<...<Cn = bi;T2 : a2 = Yo < Y1 < . . . < Ym = b2;T3 : a3 = Zo < Z1 < : < Z1 = b3.三族平行平面 = αi, (i = 0,1,..·,n), y = yj, (j = 0,1,·,m) z = zk(k = 0,1, ,l) 把 V 分成 n × m × l 个子区间:Viik = [ci-1, ci] × [Yj-1, yi] × [zk-1, zk](i = 1,2, ..,n; j = 1, 2, ...,m; k = 1, 2,..,l.)这些子区间组成 V的一个分割T= T ×Ti × T.对于在 V上定义的函数返回全屏关闭退出1/25
Vg \gÈ© §10.3 nÈ© 10.3.1 nÈ©Vg V = [a1, b1] × [a2, b2] × [a3, b3] ´ R3 ¥n4«m. ©O Ii = [ai, bi ] (i = 1, 2, 3) þ©: T1 : a1 = x0 < x1 < · · · < xn = b1; T2 : a2 = y0 < y1 < · · · < ym = b2; T3 : a3 = z0 < z1 < · · · < zl = b3. nx²1²¡ x = xi, (i = 0, 1, · · · , n), y = yj, (j = 0, 1, · · · , m) z = zk (k = 0, 1, · · · , l) r V ©¤ n × m × l f«m: Vijk = [xi−1, xi ] × [yj−1, yj] × [zk−1, zk] (i = 1, 2, · · · , n; j = 1, 2, · · · , m; k = 1, 2, · · · , l.) ù f«m|¤ V © T = T1 × T1 × T3. éu3 V þ½Â¼ê 1/25 kJ Ik J I £ ¶ '4 òÑ