
SÈ Schwarts ت ½n IOz 2 Fourier ?ê 5 V4õª §12.2 2 Fourier ?ê 12.2.1 SÈ ½Â 1 X ´ R þ5m, l X × X R N: (x, y) ∈ X × X → hx, yi ∈ R ¡ X þSÈ, eéu?¿ x, y, z ∈ X , α, β ∈ R, k 1 ◦ hx, xi > 0, hx, xi = 0 = x = 0. 5 2 ◦ hx, yi = hy, xi é¡5 3 ◦ hαx + βy, zi = αhx, zi + βhy, zi V5 ½Â SÈ5m¡SÈm. 1/18 kJ Ik J I £ ¶ '4 òÑ