63二根+减第2课时) MYKONGLONG
例4计算: ()(+√)×√6:(2)(42-36)22 解()(8+√5)×6 =8×√6+√3× =√8×6+3×6 =43+3√2 (2)(42=36÷22 42÷2√2-3√6÷2√2 =2-33 MYKONGLONG
例4 计算: (1 8 3 6 2 4 2 3 6 2 2. ) ( + − ) ; ( ) ( ) 解:(1 8 3 6 ) ( + ) (2 4 2 3 6 2 2 ) ( − ) =4 3 3 2 + ; = 8 6 3 6 + = 8 6 3 6 + 3 2 3. 2 = − 4 2 2 2 3 6 2 2 = −
例5计算: ()(√2+32=5)(2)(5+√3)-3 解()(2+3)(2=5)()(5+5-3) (V2)+352-5V215=(5)-(3) =2-2 √2 15 =5-3 =-13-2√2 =2 例5第(1)(2)小题分别利用了多项式乘 法法则和公式:(a+b)(a-b)=a2-b2 在二次根式的运算中多项式乘法法则和乘法 公式仍然适用 MYKONGLONG
例5 计算: (1 2 3 2 5 ; 2 5 3 5 3 . ) ( + − + − )( ) ( ) ( )( ) 解:(1 2 3 2 5 ) ( + − )( ) 2 5 3 5 3 ( ) ( + − )( ) ( ) 2 = 2 3 2 5 2 15 + − − =2 2 2 15 − − = 13 2 2 − − ; ( ) ( ) 2 2 = 5 3 − =5 3 − 2. = 例5第(1)(2)小题分别利用了多项式乘 法法则和公式: (a+b)(a-b)=a 2 -b 2 在二次根式的运算中,多项式乘法法则和乘法 公式仍然适用
练习 1.计算: )√2M3+√5)=√2×3+√2×5=√6+ 0+√40)÷√5 5+20)--45x1=+25x2x2=4+2 ()(5+3(5+2)=(5)+25+35+6 =5+55+6 =11+5 √5: a a)-√a、b+3 =3a+2√ab-b MYKONGLONG
1.计算: (1) 2( 3 + 5)= (2) ( 80 + 40) 5 = (3) ( 5 + 3)( 5 + 2) (4) ( a + b )(3 a − b ) 2 3 2 5 + = 6 10 + ; ( + ) = 5 1 4 5 2 10 + = 5 1 2 5 2 5 1 4 5 4 2 2 + ; ( 5) 2 5 3 5 6 2 = + + + = 5+5 5 + 6 = + 11 5 5; ( ) ( ) 2 2 = 3 a − a b + 3 a b − b = + − 3 2 . a ab b 练习
2计算: )4+√74 =42-(7 =16-7 =6-2 =9 )(3+2) ()(5-2) =(3)+2×23+2=125)-2×253×2(2 =7+43; =22-4√10 MYKONGLONG
2.计算: (1) (4 + 7)(4 − 7) ( ) ( ) 2 3 3 + 2 (2) ( 6 + 2)( 6 − 2) ( ) ( ) 2 4 2 5 − 2 ( ) 2 2 = 4 − 7 =16-7 =9; ( ) ( ) 2 2 = 6 − 2 =6-2 =4; ( ) 2 2 = 3 + 22 3 + 2 = +7 4 3; ( ) ( ) 2 2 = 2 5 − 22 5 2 + 2 = − 22 4 10