初中数学知识点归纳 有理数的加法运算 同号两数来相加,绝对值加不变号。 异号相加大减小,大数决定和符号 互为相反数求和,结果是零须记好。 【注】“大”减“小”是指绝对值的大小。 有理数的减法运算 减正等于加负,减负等于加正。 有理数的乘法运算符号法则 同号得正异号负,一项为零积是零。 合并同类项 第1页共38
第 1 页 共 38 页 初中数学知识点归纳 有理数的加法运算 同号两数来相加,绝对值加不变号。 异号相加大减小,大数决定和符号。 互为相反数求和,结果是零须记好。 【注】“大”减“小”是指绝对值的大小。 有理数的减法运算 减正等于加负,减负等于加正。 有理数的乘法运算符号法则 同号得正异号负,一项为零积是零。 合并同类项
说起合并同类项,法则千万不能忘。 只求系数代数和,字母指数留原样。 去、添括号法则 去括号或添括号,关键要看连接号 扩号前面是正号,去添括号不变号。 括号前面是负号,去添括号都变号。 解方程 已知未知闹分离,分离要靠移完成。 移加变减减变加,移乘变除除变乘。 平方差公式 两数和乘两数差,等于两数平方差。 第2页共38
第 2 页 共 38 页 说起合并同类项,法则千万不能忘。 只求系数代数和,字母指数留原样。 去、添括号法则 去括号或添括号,关键要看连接号。 扩号前面是正号,去添括号不变号。 括号前面是负号,去添括号都变号。 解方程 已知未知闹分离,分离要靠移完成。 移加变减减变加,移乘变除除变乘。 平方差公式 两数和乘两数差,等于两数平方差
积化和差变两项,完全平方不是它。 完全平方公式 二数和或差平方,展开式它共三项。 首平方与末平方,首末二倍中间放。 和的平方加联结,先减后加差平方。 完全平方公式 首平方又末平方,二倍首末在中央。 和的平方加再加,先减后加差平方。 解一元一次方程 先去分母再括号,移项变号要记牢。 同类各项去合并,系数化“1”还没好 第3页共38
第 3 页 共 38 页 积化和差变两项,完全平方不是它。 完全平方公式 二数和或差平方,展开式它共三项。 首平方与末平方,首末二倍中间放。 和的平方加联结,先减后加差平方。 完全平方公式 首平方又末平方,二倍首末在中央。 和的平方加再加,先减后加差平方。 解一元一次方程 先去分母再括号,移项变号要记牢。 同类各项去合并,系数化“1”还没好
求得未知须检验,回代值等才算了。 解一元一次方程 先去分母再括号,移项合并同类项。 系数化1还没好,准确无误不白忙 因式分解与乘法 和差化积是乘法,乘法本身是运算。 积化和差是分解,因式分解非运算。 因式分解 两式平方符号异,因式分解你别怕。 两底和乘两底差,分解结果就是它。 两式平方符号同,底积2倍坐中央。 第4页共38
第 4 页 共 38 页 求得未知须检验,回代值等才算了。 解一元一次方程 先去分母再括号,移项合并同类项。 系数化 1 还没好,准确无误不白忙。 因式分解与乘法 和差化积是乘法,乘法本身是运算。 积化和差是分解,因式分解非运算。 因式分解 两式平方符号异,因式分解你别怕。 两底和乘两底差,分解结果就是它。 两式平方符号同,底积 2 倍坐中央
因式分解能与否,符号上面有文章。 同和异差先平方,还要加上正负号。 同正则正负就负,异则需添幂符号。 因式分解 提二套三分组,十字相乘也上数。 四种方法都不行,拆项添项去重组。 重组无望试求根,换元或者算余数。 多种方法灵活选,连乘结果是基础。 同式相乘若出现,乘方表示要记住。 【注】一提(提公因式)二套(套公式) 因式分解 第5页共38
第 5 页 共 38 页 因式分解能与否,符号上面有文章。 同和异差先平方,还要加上正负号。 同正则正负就负,异则需添幂符号。 因式分解 一提二套三分组,十字相乘也上数。 四种方法都不行,拆项添项去重组。 重组无望试求根,换元或者算余数。 多种方法灵活选,连乘结果是基础。 同式相乘若出现,乘方表示要记住。 【注】 一提(提公因式)二套(套公式) 因式分解
一提二套三分组,叉乘求根也上数 五种方法都不行,拆项添项去重组 对症下药稳又准,连乘结果是基础。 二次三项式的因式分解 先想完全平方式,十字相乘是其次 两种方法行不通,求根分解去尝试。 比和比例 两数相除也叫比,两比相等叫比例。 外项积等内项积,等积可化八比例。 分别交换内外项,统统都要叫更比。 同时交换内外项,便要称其为反比。 第6页共38
第 6 页 共 38 页 一提二套三分组,叉乘求根也上数。 五种方法都不行,拆项添项去重组。 对症下药稳又准,连乘结果是基础。 二次三项式的因式分解 先想完全平方式,十字相乘是其次。 两种方法行不通,求根分解去尝试。 比和比例 两数相除也叫比,两比相等叫比例。 外项积等内项积,等积可化八比例。 分别交换内外项,统统都要叫更比。 同时交换内外项,便要称其为反比
前后项和比后项,比值不变叫合比。 前后项差比后项,组成比例是分比 两项和比两项差,比值相等合分比。 前项和比后项和,比值不变叫等比 解比例 外项积等内项积,列出方程并解之。 求比值 由已知去求比值,多种途径可利用。 活用比例七性质,变量替换也走红。 消元也是好办法,殊途同归会变通。 正比例与反比例 第7页共38
第 7 页 共 38 页 前后项和比后项,比值不变叫合比。 前后项差比后项,组成比例是分比。 两项和比两项差,比值相等合分比。 前项和比后项和,比值不变叫等比。 解比例 外项积等内项积,列出方程并解之。 求比值 由已知去求比值,多种途径可利用。 活用比例七性质,变量替换也走红。 消元也是好办法,殊途同归会变通。 正比例与反比例
商定变量成正比,积定变量成反比。 正比例与反比例 变化过程商一定,两个变量成正比。 变化过程积一定,两个变量成反比 判断四数成比例 四数是否成比例,递增递减先排序。 两端积等中间积,四数一定成比例。 判断四式成比例 四式是否成比例,生或降幂先排序。 两端积等中间积,四式便可成比例。 比例中项 第8页共38
第 8 页 共 38 页 商定变量成正比,积定变量成反比。 正比例与反比例 变化过程商一定,两个变量成正比。 变化过程积一定,两个变量成反比。 判断四数成比例 四数是否成比例,递增递减先排序。 两端积等中间积,四数一定成比例。 判断四式成比例 四式是否成比例,生或降幂先排序。 两端积等中间积,四式便可成比例。 比例中项
成比例的四项中,外项相同会遇到。 有时内项会相同,比例中项少不了。 比例中项很重要,多种场合会碰到。 成比例的四项中,外项相同有不少 有时内项会相同,比例中项出现了。 同数平方等异积,比例中项无处逃。 根式与无理式 表示方根代数式,都可称其为根式。 根式异于无理式,被开方式无限制。 被开方式有字母,才能称为无理式。 无理式都是根式,区分它们有标志。 第9页共38
第 9 页 共 38 页 成比例的四项中,外项相同会遇到。 有时内项会相同,比例中项少不了。 比例中项很重要,多种场合会碰到。 成比例的四项中,外项相同有不少。 有时内项会相同,比例中项出现了。 同数平方等异积,比例中项无处逃。 根式与无理式 表示方根代数式,都可称其为根式。 根式异于无理式,被开方式无限制。 被开方式有字母,才能称为无理式。 无理式都是根式,区分它们有标志
被开方式有字母,又可称为无理式。 求定义域 求定义域有讲究,四项原则须留意。 负数不能开平方,分母为零无意义 指是分数底正数,数零没有零次幂。 限制条件不唯一,满足多个不等式。 求定义域要过关,四项原则须注意。 负数不能开平方,分母为零无意义。 分数指数底正数,数零没有零次幂。 限制条件不唯一,不等式组求解集。 解一元一次不等式 第10页共38
第 10 页 共 38 页 被开方式有字母,又可称为无理式。 求定义域 求定义域有讲究,四项原则须留意。 负数不能开平方,分母为零无意义。 指是分数底正数,数零没有零次幂。 限制条件不唯一,满足多个不等式。 求定义域要过关,四项原则须注意。 负数不能开平方,分母为零无意义。 分数指数底正数,数零没有零次幂。 限制条件不唯一,不等式组求解集。 解一元一次不等式