1" />
D0:10.13374/.issn1001-053x.2013.07.011 第35卷第7期 北京科技大学学报 Vol.35 No.7 2013年7月 Journal of University of Science and Technology Beijing Jul.2013 热挤压工艺对Ti-6Al-4V钛合金组织与性能的影响 蔡海娇,叶文君四,惠松骁,刘睿 北京有色金属研究总院有色金属材料制备加工国家重点实验室,北京100088 ☒通信作者,E-mail:wenjun-ye@grinm.com 摘要研究了挤压温度和挤压比对Ti-6A1-4V钛合金挤压型材显微组织、织构及力学性能的影响.挤压温度在相变点 TB以上150~350℃、挤压比入为25~85范围内时,型材动态再结晶均己完成,形成均匀的魏氏组织.型材的晶粒随挤 压温度的降低和挤压比的提高而细化.型材织构在挤压比较低(A=25)时强度较弱且为随机分布;当挤压比增加时,织 构增强并有形成(1219)面纤维织构的趋势:当挤压比提高至85时,形成完整的(1219)面纤维织构.由于织构与晶粒细 化的共同作用,使不同挤压条件下得到的Ti-6A1-4V钛合金型材综合力学性能比较稳定,即强度差异均不大于35MPa, 且延伸率和断面收缩率差值均不超过3%, 关键词钛合金:挤压:力学性能:织构 分类号TG146.2+3 Effects of hot extrusion on the microstructure and properties of Ti-6Al-4V titanium alloy CAI Hai-jiao,YE Wen-jun,HUI Song-riao,LIU Rui State Key Lab of Nonferrous Metals and Processes,General Research Institute of Non-ferrous Metal,Beijing 100088,China Corresponding author,E-mail:wenjun-ye@grinm.com ABSTRACT Experiments were performed to investigate the effect of extrusion ratio and temperature on the mi- crostructure,texture and mechanical properties of Ti-6Al-4V titanium alloy.When the extrusion temperature is in the range of 150 to 350 C above the phase transition temperature (Ta)and the extrusion ratio (A)is in the range of 25 to 85,dynamic recrystallization has completed and there is a uniform Widmanstatten structure in the extruded section. Increasing the extrusion ratio and decreasing the extrusion temperature can refine grains in the extruded section.When the extrusion ratio is low at 25,the texture strength is weak and random distributed.With the extrusion ratio increas- ing,the texture strengthens and is inclined to evolve into the (1219)fiber texture.The perfect (1219)fiber texture is achieved when the extrusion ratio is 85.The comprehensive performance of the extruded section obtained under different extrusion conditions is stable because of the combined effect of texture and grain refinement,the difference in strength is less than 35 MPa,and the differences in elongation and necking rate are all less than 3%. KEY WORDS titanium alloys;extrusion;mechanical properties;textures 型材是一种近终型产品,经简单机加工之后或 型材的制备方法中,挤压法备受关注.相对于乳制 者不经机加工即可使用,具有较高的结构效益.钛 法,挤压法不需要成本较高的整套孔型设计及制造, 合金与复合材料相接触时,不存在类似于铝合金的 仅通过合理的挤压模具设计即可生产复杂截面的型 接触腐蚀问题.以钛合金作为型材,可以充分发挥 材,满足多品种小批量的生产需求,具有生产灵活、 钛合金比强度高和耐腐蚀的优点.因此,钛合金型 加工效率高等优点回.国外对钛合金型材的研究 材在航空航天领域具有广阔的应用前景山.钛合金 持续多年,目前美国及俄罗斯都早已具备生产高品 收稿日期:2012-04-05 基金项目:科技部国际合作资助项目(2010DFA52280,0S2012GR0091)
35 7 Vol. 35 No. 7 2013 7 Journal of University of Science and Technology Beijing Jul. 2013 Ti-6Al-4V 100088 E-mail: wenjun ye@grinm.com Ti-6Al-4V . Tβ 150∼350 λ 25∼85 . . (λ=25) (¯12¯19) 85 (¯12¯19) . Ti-6Al-4V 35 MPa 3%. TG146.2+3 Effects of hot extrusion on the microstructure and properties of Ti-6Al-4V titanium alloy CAI Hai-jiao, YE Wen-jun , HUI Song-xiao, LIU Rui State Key Lab of Nonferrous Metals and Processes, General Research Institute of Non-ferrous Metal, Beijing 100088, China Corresponding author, E-mail: wenjun ye@grinm.com ABSTRACT Experiments were performed to investigate the effect of extrusion ratio and temperature on the microstructure, texture and mechanical properties of Ti-6Al-4V titanium alloy. When the extrusion temperature is in the range of 150 to 350 above the phase transition temperature (Tβ) and the extrusion ratio (λ) is in the range of 25 to 85, dynamic recrystallization has completed and there is a uniform Widmanst¨atten structure in the extruded section. Increasing the extrusion ratio and decreasing the extrusion temperature can refine grains in the extruded section. When the extrusion ratio is low at 25, the texture strength is weak and random distributed. With the extrusion ratio increasing, the texture strengthens and is inclined to evolve into the (¯12¯19) fiber texture. The perfect (¯12¯19) fiber texture is achieved when the extrusion ratio is 85. The comprehensive performance of the extruded section obtained under different extrusion conditions is stable because of the combined effect of texture and grain refinement, the difference in strength is less than 35 MPa, and the differences in elongation and necking rate are all less than 3%. KEY WORDS titanium alloys; extrusion; mechanical properties; textures . . . [1]. . [2]. 2012–04–05 (2010DFA52280, 0S2012GR0091) DOI:10.13374/j.issn1001-053x.2013.07.011
.896 北京科技大学学报 第35卷 质钛合金型材的能力周在我国,代春等多名学 本实验条件下得到的型材组织为魏氏组 者【-12通过实验方法对TA15、TA16、TA22、TC2、 织,阝相含量很少而密排六方结构的α相占 Ti-6A1-4V等钛合金管材的挤压成形和组织性能进 主体,因此仅对α相进行织构分析.分别测试 行了研究,程奔13!和路郅远4使用有限元模 (0002)、(1010)、(1011)、(1012)和(1100)五个面 拟软件分别对钛合金筒体和管件的挤压过程进行了 的不全极图,然后计算出取向分布函数(ODF),用 模拟研究及实验验证,但针对钛合金型材挤压的研 恒P2(晶体绕晶体轴的旋转角度)从0°到90°每隔 究还仅处于初步探索阶段,与国外相比仍存在较大 5°截取取向空间,然后在各截面上给出取向密度 差距 的等密度线.对于密排六方结构,其低指数晶面主 本文探讨了挤压温度和挤压比对Ti-6A1-4V 要集中在p2=0°、30°和60°的面上,而p2=30°和 钛合金型材组织、织构及性能的影响,以期为 60°的面是等效的,因此仅分析p2=0°和30°的面 Ti-6A1-4V钛合金型材的工业化生产工艺参数的制 即可 定提供参考 2实验结果与讨论 1实验材料及方法 2.1挤压条件对型材组织的影响 本研究实验用材料为Ti-6A1-4V钛合金,其化 图2为不同挤压温度和挤压比下制得型材的 学成分符合GB/T3620标准要求.合金经熔炼、铸 显微组织.采用截面法估算所得型材平均晶粒尺寸, 造并锻造后,机加工成φ216mm×320mm的挤压 其数据列于表1.由图2中低倍照片可以看出,不同 锭坯.锭坯加热与挤压过程中使用玻璃防护润滑 条件下制得型材组织细节基本相似,样品组织大小 剂5-16进行防护与润滑.挤压温度分别为a相 均匀,晶粒没有被拉长的迹象,证明型材已完成动 转变为B相的相变温度TB以上150~250℃(TB+ 态再结晶过程,形成均匀的完全再结晶组织.由图 (150250)℃)和250350℃(TB+(250350)℃), 2中高倍照片可以看见粗大的原始阝晶粒,在原始 挤压比入分别为25、45和85.挤压比入=A0/A1, B晶界上分布有清晰的品界a,原始B晶内为片状 其中A0为挤压前原始锭坯的横截面积,A1为挤压 α束域,a片间为B相,即均为典型的魏氏组织.由 后型材的横截面积. 表1可知,降低挤压温度和增大挤压比可以使型材 晶粒尺寸减小,晶粒细化.这是由于变形量的增大 对型材横截面取样进行金相观察与织构测试, 并沿型材挤出方向(ED)取样进行力学性能测试.挤 使得晶粒动态再结晶更充分.同时,根据现场实验 压过程与型材横截面示意图如图1所示.采用Ax- 记录,挤压坯料加热至相变点温度以上时,每升高 l00℃需耗时5min.因此,加热温度降低时,所 iovert200MAT光学显微镜对型材进行金相显微观 察:采用万能试验机测试型材拉伸性能;采用X射 需的加热时间缩短,晶粒长大的能量与时间相应减 线衍射(XRD)技术对型材室温下的宏观织构进行 少,二者的共同作用使晶粒得到细化.综上所述, 测试(测试仪器为X'pert MRD衍射仪),Cu靶,电 在相变点以上温度范围内挤压钛合金时,适当降 压40kV,步长△a=5°,△6=5°,扫描范围a为 低加热温度并增大挤压比可以获得晶粒较细小的挤 0°~70°,3为0°360° 压件. 2.2挤压条件对型材织构的影响 挤出方向(ED) 图3为不同挤压条件下型材α相的恒2取 观察面 玻璃润滑剂 挤压 向分布函数图(2=0°,30),表2为与图3中标 玻璃垫 模具 注位置相对应的各型材主要织构及其取向密度值 f(g).由图3(a)和(b)可知,挤压条件为TB+(150~ 观察区 ,横向(TD) 250)℃、入=25时所得型材的织构分布较为漫散,强 挤压筒 织构取向主要为(12i9)[4311],其次为(12i2)2203 观察面 和(0332)2203].当挤压温度为TB+(250350) 锭坯 挤压轴 ℃、λ=25时(见图3(c)和(d),所得型材织构类型不 变,但取向密度值稍有增大(见表2).当TB+(250~ 图1挤压过程与型材横截面示意图 350)℃、=45(见图3(e)和())时,所得型材织构 Fig.1 Schematic diagram of the extrusion process and the cross-section of the extruded section 相对集中,且有形成(1219)纤维织构的趋势.当
· 896 · 35 [3]. [4−12] TA15TA16TA22TC2 Ti-6Al-4V [13] [14] . Ti-6Al-4V Ti-6Al-4V . 1 Ti-6Al-4V GB/T3620 . φ216 mm×320 mm . [15−16] . α β Tβ 150∼250 (Tβ + (150∼250) ) 250∼350 (Tβ + (250∼350) ) λ 2545 85. λ = A0/A1 A0 A1 . (ED) . 1 . Axiovert 200 MAT X (XRD) ( X’pert MRD )Cu 40 kV Δα = 5◦Δβ = 5◦ α 0◦∼70◦β 0◦∼360◦. 1 Fig.1 Schematic diagram of the extrusion process and the cross-section of the extruded section β α α . (0002)(10¯10)(10¯11)(10¯12) (1100) (ODF) ϕ2( ) 0◦ 90◦ 5◦ . ϕ2=0◦30◦ 60◦ ϕ2=30◦ 60◦ ϕ2=0◦ 30◦ . 2 2.1 2 . 1. 2 . 2 β β α β α α β . 1 . . 100 5 min. . . 2.2 3 α ϕ2 (ϕ2=0◦, 30◦) 2 3 f(g). 3(a) (b) Tβ+(150∼ 250) λ= 25 (¯12¯19)[4¯3¯11] (¯12¯12)[2¯203] (03¯32)[2¯203]. Tβ + (250∼350) λ=25 ( 3(c) (d)) ( 2). Tβ+(250∼ 350) λ=45( 3(e) (f)) (¯12¯19) .
第7期 蔡海娇等:热挤压工艺对Ti-6Al-4V钛合金组织与性能的影响 .897· TB+(250350)℃、λ=85(见图3(g)和(h)时,所得 增强:增大挤压比,织构由漫散到集中,且以(29) 型材形成完整的(29)纤维织构且强度增大,其他 近纤维或纤维织构为主;当挤压比入=85时,所形 织构均较弱.综上可知:升高挤压温度,型材织构 成的(1219)纤维织构最强且最完整. (a) e 200μn 200Hm 200μm 200μm (b) 题(d) 里(f) (h) 50 um 50 pm 50m 50m 图2不同条件下制得挤压型材的光学显微组织.(a,b)TB+(150~250)℃,入=25:(c,d)TB+(250350)℃,入=25:(e,f)TB +(250~350)℃,入=45:(g.h)TB+(250350)℃,入=85 Fig.2 Optical microstructures of extruded sections under different extrusion conditions:(a,b)T8+(150~250)C,A=25;(c, d)TB+(250350)℃,入=25:(e,f)TB+(250350)℃,入=45;(g,h)T+(250350)℃,入=85 表1不同条件下制得挤压型材的晶粒尺寸 图5为不同挤压条件下型材室温下的力学性 Table 1 Grain size of extruded sections under different ex- 能.由图可知:挤压温度由TB+(250350)℃降低 trusion conditions 至TB+(150~250)℃时,挤压得到的型材抗拉强度 挤压条件 品粒尺寸/um 由970MPa增加至980MPa,屈服强度由825MPa TB+(150250)℃,入=25 120140 180210 增加至850MPa,延伸率由13.3%增加至14.0%;挤 TB+(250350)℃,入=25 TB+(250350)℃,入=45 120150 压比由25增大至85时,挤压得到的型材抗拉强 TB+(250350)℃,入=85 80100 度由970.0MPa增加至992.5MPa,屈服强度由 加热温度高于T时,由于变形热的作用会使 825MPa增加至860MPa,延伸率由13.3%降低至 变形区金属的温度进一步升高可,因此变形过程 12.5%.综上可知,降低挤压温度和增大挤压比,所 中合金内部全部为B相.挤压变形结束后,随着 得型材抗拉强度与屈服强度逐渐增大但变化幅度均 型材温度的下降,B相发生同素异构转变生成α 不大于35MPa,延伸率呈减小趋势.且塑性差值小 相,体心立方B-Ti的滑移面与六方a-Ti的基面 于3%,即不同条件下挤压型材的综合性能比较稳定. 转变及其各自的滑移方向符合柏格斯关系,18,即 根据霍尔-配奇(Hall-Patch)公式: (0001)a/(110)B,[1120]a/111B.根据柏格斯关系, 推算出与a相中(2i9)晶面相对应的B相中晶面 0y=o0+Kd1/2, () 为(011),即在相变点以上挤压Ti-6A1-4V钛合金型 式中,σy为屈服强度:σ0为常数,大体相当于单晶 材时,阝单相组织中有形成(O11)纤维织构的趋势. 体的屈服极限:K为表征晶界对强度影响程度的常 由于在X射线衍射测量过程中,测量截面与型材挤 数:d为多晶体的晶粒平均直径19.由于与晶粒尺 出方向垂直(如图1所示),则热挤压型材阝单相组 寸无关的量oo通常较小,而Kd-12项的数值占屈 织中多数晶粒的取向接近型材的挤出方向, 服强度数值的70%以上口,表明晶粒尺寸的改变会 即/ED.这是由于体心立方B相的(111)滑 带动材料屈服强度发生较明显的变化.同时,晶粒 移面上的方向在热变形时较易开动,进而 细化可以提高材料塑性,因为晶粒越细,在一定体 成为热挤压过程中主要的滑移方向.晶体受压变形 积内的晶粒数目越多,则在同样变形量下,变形分 时的转动导致滑移面逐渐趋于与压力轴线垂直,滑 散在更多的晶粒内进行,变形较均匀,且每个晶粒 移方向趋于转至外力在滑移面上的最大分切应力方 中塞积的位错少,应力集中引起的开裂机会少,有 向.热挤压时,由于轴向压应力最大,所以金属多数 可能在断裂前承受较大的变形量,即表现出较高的 变形品粒的滑移方向平行于挤压方问. 塑性. 2.3挤压条件对型材性能的影响
7 Ti-6Al-4V · 897 · Tβ+(250∼350) λ=85( 3(g) (h)) (¯12¯19) . (¯12¯19) λ=85 (¯12¯19) . 2 . (a, b) Tβ + (150∼250) , λ = 25; (c, d) Tβ + (250∼350) , λ = 25; (e, f) Tβ + (250∼350) , λ = 45; (g, h) Tβ + (250∼350) , λ = 85 Fig.2 Optical microstructures of extruded sections under different extrusion conditions: (a, b) Tβ + (150∼250) , λ = 25; (c, d) Tβ + (250∼350) , λ = 25; (e, f) Tβ + (250∼350) , λ = 45; (g, h) Tβ + (250∼350) , λ = 85 1 Table 1 Grain size of extruded sections under different extrusion conditions /μm Tβ + (150∼250) , λ = 25 120∼140 Tβ + (250∼350) , λ = 25 180∼210 Tβ + (250∼350) , λ = 45 120∼150 Tβ + (250∼350) , λ = 85 80∼100 Tβ [17] β . β α β-Ti α-Ti [1,18] (0001)α//(110)β[11¯20]α//[111]β. α (¯12¯19) β (011) Ti-6Al-4V β (011) . X ( 1 ) β //ED. β (111) . . . 2.3 5 . Tβ + (250∼350) Tβ + (150∼250) 970 MPa 980 MPa 825 MPa 850 MPa 13.3% 14.0% 25 85 970.0 MPa 992.5 MPa 825 MPa 860 MPa 13.3% 12.5%. 35 MPa . 3% . – (Hall-Patch) σy = σ0 + Kd−1/2, (1) σy σ0 K d [19]. σ0 Kd−1/2 70%[1] . .
.898 北京科技大学学报 第35卷 0 2=0° (a) 2=30 10 20 0102030405060708090 102030405060708090 (c) %=30 (d) 10 10 20 30 30 40 40 50 50 60 60 70 70 80 80 % 01020 30 4050 60 70 80 90 0102030405060708090 2=0° (ej 2=30 (f) 10 20 0 30 30 40 吃 50 60 80 90 102030405060708090 102030405060708090 9=0° (g) 92=30 (h) 10 20 40 60 70 80 80 90 90 102030405060708090 0102030405060708090 图3不同条件下制得挤压型材的恒2取向分布函数截面图.(a,b)T+(150250)℃,A=25;(c,d)TB+(250~350)℃,入=25;(e, f)TB+(250350)℃,λ=45:(g.h)T+(250~350)℃,X=85 Fig.3 ODF chart with constant 2 of extruded sections under different extrusion conditions:(a,b)T8+(150~250)C,A=25;(c, d)TB+(250350)℃,λ=25;(e,f)TB+(250350)℃,λ=45:(g.h)TB+(250350)℃,λ=85
· 898 · 35 3 ϕ2 . (a, b) Tβ+(150∼250) , λ=25; (c, d) Tβ+(250∼350) , λ=25; (e, f) Tβ+(250∼350) , λ=45; (g, h)Tβ+(250∼350) , λ=85 Fig.3 ODF chart with constant ϕ2 of extruded sections under different extrusion conditions: (a, b) Tβ+(150∼250) , λ=25; (c, d) Tβ+(250∼350) , λ=25; (e, f) Tβ+(250∼350) , λ=45; (g, h)Tβ+(250∼350) , λ=85
第7期 蔡海娇等:热挤压工艺对Ti-6Al-4V钛合金组织与性能的影响 899· 表2不同条件下制得挤压型材的主要织构和取向密度 Table 2 Main texture and orientation density of extruded sections under different extrusion conditions 挤压条件 位置 92 织构 f(g) A 20° 20° 0° (1219)[43i1] 1.468 TB+(150250)℃,入=25 B 750 60° 0° (12i2)[2203 1.678 C 250 70° 30° (0332)[2203] 1.309 D 5° 20° 0° (12i9)[10371 2.022 TB+(250350)℃,X=25 E 90° 60° 0° (1212)[1213] 2.052 650 70° 30° (0332)[2203 1.867 TB+(250~350)℃,入=45 G 30° 20° 0° (1219) 3.499 H 50° 70° 30° (0332)[65i6] 1.872 TB+(250~350)℃,入=85 50° 20° 0° (1219) 4.013 由以上两部分内容可知:当挤压温度为T+ 压比,型材织构由漫散到集中,且有形成(1219)纤 (250350)℃时,入=85时挤压所得型材晶粒尺寸 维织构的趋势.挤压比为85时,型材内部形成完整 比入=25时挤压型材晶粒尺寸减小约1/2,而型 的(1219)面纤维织构.(1219)纤维织构与晶粒细化 材的抗拉强度与屈服强度仅分别增加2.3%与4.2%: 的共同作用,使不同挤压条件下得到的Ti-6Al-4V 随着晶粒尺寸的减小,型材延伸率的最大变化幅度 型材强度与塑性较稳定. 仅为16.7%.以上数据表明:(1219)纤维织构的存 在与增强阻碍了型材强度与塑性的提高;晶粒细化 参考文献 与(1219)纤维织构的共同作用,使挤压型材强度与 塑性仅发生小幅波动.不同挤压条件下挤压型材的 [1]Leyens C.Peters M.Titanium and Titanium Alloys. 抗拉强度和屈服强度差值均小于35MPa,延伸率 Chen Z H,Translated.Beijing:Chemical Industry Press, 和断面收缩率差值均不超过3%,说明在相变点T 2005 以上150~350℃进行B单相区挤压,挤压比入为 (莱茵斯,皮特尔斯.钛和钛合金.陈振华,译.北京:化学 25~85时,Ti-6A1-4V合金挤压型材力学性能稳定. 工业出版社,2005) [2]Zhang Z,Xie SS,Zhao Y H,et al.Titanium Plastic Pro- ■抗拉强度 1200 口屈服强度 125 cessing Technology.Beijing:Metallurgy Industry Press, 口延伸率 23 2010 70 972 025 2 (张翥,谢水生,赵云豪,等.钛材塑性加工技术.北京:冶 19 金工业出版社,2010) 17 [3]Lou G T.Application and development of titanium alloy G00 3.3 Titanium Ind Prog,2003,20(2):9 2. 13 400 (娄贯涛.钛合金的研究应用现状及其发展方向.钛工业进 展,2003,20(2):9) 200 [4]Dai C,Wang L,Li C J,et al.Study on extruding process of TA15 alloy tube.Rare Met Mater Eng,2005,34(Suppl T+(150-250)℃T+(250-350)℃T1+(250-350)℃T3+(250-350℃ λ=25 =25 入=45 入=85 3):489 (代春,王练,李长江,等.TA15钛合金管材挤压工艺研究 图4不同条件下挤压型材的力学性能 稀有金属材料与工程,2005,34(增刊3):489) Fig.4 Mechanical properties of extruded sections under dif- [5]Yan S.Study on hot extrusion technology for Ti-6Al-4V ferent conditions (T=25 C) alloy tube.Aeronaut Manuf Technol,2010(20):73 (颜苏.Ti-6A-4V合金热挤压管材工艺研究.航空制造技 3结论 术,2010(20):73) [6]Yang Y L,Tong X W,Yang LL.Study of extrusion work- 挤压温度为相变温度(T)以上150~350℃,挤 ing process of TC2 titanium alloy tube.Titanium Ind 压比()为2585时挤压Ti-6A1-4V钛合金型材,所 Pog,2005,22(3:489 得型材动态再结晶已经完成,并形成均匀的魏氏组 (羊玉兰,佟学文,杨陇林.TC2钛合金管材挤压工艺.钛 织.降低挤压温度和增大挤压比,型材晶粒得到明 工业进展,2005.22(3):489) 显细化.挤压温度为TB+(250350)℃时,增大挤 [7]Zhang Y Q,Feng Y Q,Li W Q,et al.Study of extrusion
7 Ti-6Al-4V · 899 · 2 Table 2 Main texture and orientation density of extruded sections under different extrusion conditions ϕ1 ϕ ϕ2 f(g) Tβ + (150∼250) , λ = 25 A 20◦ 20◦ 0◦ (¯12¯19)[4¯3¯11] 1.468 B 75◦ 60◦ 0◦ (¯12¯12)[2¯203] 1.678 C 25◦ 70◦ 30◦ (03¯32)[2¯203] 1.309 Tβ + (250∼350) , λ = 25 D 5◦ 20◦ 0◦ (¯12¯19)[10¯3¯71] 2.022 E 90◦ 60◦ 0◦ (¯12¯12)[1¯213] 2.052 F 65◦ 70◦ 30◦ (03¯32)[2¯203] 1.867 Tβ + (250∼350) , λ = 45 G 30◦ 20◦ 0◦ (¯12¯19) 3.499 H 50◦ 70◦ 30◦ (03¯32)[6¯5¯16] 1.872 Tβ + (250∼350) , λ = 85 I 50◦ 20◦ 0◦ (¯12¯19) 4.013 Tβ + (250∼350) λ = 85 λ = 25 1/2 2.3% 4.2% 16.7%. (¯12¯19) (¯12¯19) . 35 MPa 3% Tβ 150∼350 β λ 25∼85 Ti-6Al-4V . 4 Fig.4 Mechanical properties of extruded sections under different conditions (T = 25 ) 3 (Tβ) 150∼350 (λ) 25∼85 Ti-6Al-4V . . Tβ + (250∼350) (¯12¯19) . 85 (¯12¯19) . (¯12¯19) Ti-6Al-4V . [1] Leyens C, Peters M. Titanium and Titanium Alloys. Chen Z H, Translated. Beijing: Chemical Industry Press, 2005 ( , . . , . : , 2005) [2] Zhang Z, Xie S S, Zhao Y H, et al. Titanium Plastic Processing Technology. Beijing: Metallurgy Industry Press, 2010 (, , . . : , 2010) [3] Lou G T. Application and development of titanium alloy. Titanium Ind Prog, 2003, 20(2): 9 (. . , 2003, 20(2): 9) [4] Dai C, Wang L, Li C J, et al. Study on extruding process of TA15 alloy tube. Rare Met Mater Eng, 2005, 34(Suppl 3): 489 (, , , . TA15 . , 2005, 34( 3): 489) [5] Yan S. Study on hot extrusion technology for Ti-6Al-4V alloy tube. Aeronaut Manuf Technol, 2010(20): 73 (. Ti-6Al-4V . , 2010(20): 73) [6] Yang Y L, Tong X W, Yang L L. Study of extrusion working process of TC2 titanium alloy tube. Titanium Ind Prog, 2005, 22(3): 489 (, , . TC2 . , 2005, 22(3): 489) [7] Zhang Y Q, Feng Y Q, Li W Q, et al. Study of extrusion
.900 北京科技大学学报 第35卷 process for TC4 tube.Rare Met Lett,2006,25(10):27 (程奔.TC4钛合金筒体反挤压工艺的数值模拟研究[学位 (张永强,冯永琦,李渭清,等.TC4合金管材挤压成型工艺 论文].北京:北京有色金属研究总院,2009) 研究.稀有金属快报,2006,25(10):27) [14 Lu Z Y.The Study of Backward Ertrusion Process for [8)Li X G,Tong X W,Li N,et al.Effection of extruding Small Dimensional Titanium Alloy Tube Dissertation]. technology on microstructure and properties of TA15 ti- Qinhuangdao:Yanshan University.2009 tanium alloy.Titanium Industry Progress,2010,27(3): (路郅远.小规格钛合金反挤压工艺研究[学位论文].秦皇 30 岛:燕山大学,2009) (李小刚,佟学文,李农,等.挤压工艺对TA15型材组织和 [15]Wang S Y,Li H Z,Li H Q,et al.Study on glass-protective 性能的影响.钛工业进展,2010,27(3):30) lubricants for titanium alloy forging.Forg Stamping Tech- [9)Tong X W,Li S J,Yang LL,et al.Study of hot work- nol,2003,28(4):3 ing process of TA16 titanium alloy tube.Acta Metall Sin, (王淑云,李辉忠,李惠曲,等.钛合金锻造用玻璃防护润滑 2002,38(Suppl):397 剂的研制.锻压技术,2003,28(4):3) (佟学文,李胜杰,杨陇林,等.TA16钛合金热加工管材工 [16]Duan S J.Research on glass lubricant for net-shape forg- 艺研究.金属学报,2002,38(增刊):397) ing technology of titanium alloy blade.Forg Stamping [10]Nan L,Yang YS,Qi Y H,et al.Effects of extrusion ratio Technol,2001.26(1):45 and annealing temperature on microstructure and proper- (段素杰.钛合金叶片无余量精锻工艺用玻璃防护润滑剂 ties of TA22 alloy tubes.Titanium Ind Prog,2011,28(4): 的研究.锻压技术,2001,26(1):45) 36 (南莉,杨亚社,齐元吴,等.挤压比和退火温度对TA22钛 [17]Lou Y.A study on hot extrusion of Ti-6Al-4V using sim- 合金挤压管组织与性能的影响.钛工业进展,2011,28(4): ulation and experiment.Hot Work Technol,2003(1):39 (娄燕.钛合金热挤压的有限元模拟.热加工工艺,2003(1): 36) 39) [11]Yu W X,Li M Q,Luo J.Effect of processing parameters on microstructure and mechanical properties in high tem- [18 Shang S L.Structure and Anisotropy of Titanium Alloy perature deformation of Ti-6Al-4V Alloy.Rare Met Mater with High Elastic Modulus and High Strength [Disserta- Eng,2009,38(1):19 tion].Beijing:General Research Institute for Non-ferrous [12]Jia R L,Ji B,Lii W J,et al.Research and development Metals,2000 of hot extrusion technology for titanium products.Chin (商顺利.高弹高强钛合金结构与各向异性研究[学位论 J Nonferrous Met,2010,20(Suppl 1):897 文].北京:北京有色金属研究总院,2000) (贾如雷,计波,吕维洁,等.钛材热挤压成形技术的研究与 [19]Liu C M,Li B F,Wang R,et al.Effect of double-extrusion 发展.中国有色金属学报,2010,20(增刊1):897) on microstructure and mechanical properties of Mg-12Gd- [13 Cheng B.A Study of Numerical Simulation for Backward 3Y-0.6Zr alloy.Chin J Nonferrous Met,2010,20(2):171 Ertrusion Process of TC4 Titanium Alloy Cylinder Dis- (刘楚明,李冰蜂,王荣,等.二次挤压对Mg-12Gd-3Y- sertation.Beijing:General Research Institute for Non- 0.6Zr合金显微组织及力学性能的影响.中国有色金属学 ferrous Metals,2009 报,2010,20(2:171)
· 900 · 35 process for TC4 tube. Rare Met Lett, 2006, 25(10): 27 (, , , . TC4 . , 2006, 25(10): 27) [8] Li X G, Tong X W, Li N, et al. Effection of extruding technology on microstructure and properties of TA15 titanium alloy. Titanium Industry Progress, 2010, 27(3): 30 (, , , . TA15 . , 2010, 27(3): 30) [9] Tong X W, Li S J, Yang L L, et al. Study of hot working process of TA16 titanium alloy tube. Acta Metall Sin, 2002, 38(Suppl): 397 ( , , , . TA16 . , 2002, 38( ): 397) [10] Nan L, Yang Y S, Qi Y H, et al. Effects of extrusion ratio and annealing temperature on microstructure and properties of TA22 alloy tubes. Titanium Ind Prog, 2011, 28(4): 36 (, , , . TA22 . , 2011, 28(4): 36) [11] Yu W X, Li M Q, Luo J. Effect of processing parameters on microstructure and mechanical properties in high temperature deformation of Ti-6Al-4V Alloy. Rare Met Mater Eng, 2009, 38(1): 19 [12] Jia R L, Ji B, L¨u W J, et al. Research and development of hot extrusion technology for titanium products. Chin J Nonferrous Met, 2010, 20(Suppl 1): 897 (, , , . . , 2010, 20( 1): 897) [13] Cheng B. A Study of Numerical Simulation for Backward Extrusion Process of TC4 Titanium Alloy Cylinder [Dissertation]. Beijing: General Research Institute for Nonferrous Metals, 2009 (. TC4 [ ]. : , 2009) [14] Lu Z Y. The Study of Backward Extrusion Process for Small Dimensional Titanium Alloy Tube [Dissertation]. Qinhuangdao: Yanshan University, 2009 ( . [ ]. , 2009) [15] Wang S Y, Li H Z, Li H Q, et al. Study on glass-protective lubricants for titanium alloy forging. Forg Stamping Technol, 2003, 28(4): 3 (, , , . . , 2003, 28(4): 3) [16] Duan S J. Research on glass lubricant for net-shape forging technology of titanium alloy blade. Forg Stamping Technol, 2001, 26(1): 45 ( . . , 2001, 26(1): 45) [17] Lou Y. A study on hot extrusion of Ti-6Al-4V using simulation and experiment. Hot Work Technol, 2003(1): 39 (. . , 2003(1): 39) [18] Shang S L. Structure and Anisotropy of Titanium Alloy with High Elastic Modulus and High Strength [Dissertation]. Beijing: General Research Institute for Non-ferrous Metals, 2000 (. [ ]. : , 2000) [19] Liu C M, Li B F, Wang R, et al. Effect of double-extrusion on microstructure and mechanical properties of Mg-12Gd- 3Y-0.6Zr alloy. Chin J Nonferrous Met, 2010, 20 (2): 171 ( , , , . Mg-12Gd-3Y- 0.6Zr . , 2010, 20(2): 171)