上讲回顾:绝缘的本质 绝缘的本质是局域! 现代极化理论 *周期性结构中,加入外电场的困难 *利用 Berry phase计算极化一 http://10.107.0.68/igche/ 紧束缚近似
http://10.107.0.68/~jgche/ 紧束缚近似 1 上讲回顾:绝缘的本质 • 绝缘的本质是局域! • 现代极化理论 * 周期性结构中,加入外电场的困难 * 利用Berry Phase计算极化
本讲目的:紧束缚方法 1.紧束缚方法所用基函数的数学性质差。它适合 描写电子的局域性质。紧束缚?→价电子靠近 核,或,电子行为很局域→局域在核附近 2.一个好处是:仅用少量的基函数(原子轨道) 即可令人满意地描写共价、离子晶体的电子结 构。所以计算机条件差时,该方法用得较多 3.另一好处是:能给出能带的解析形式,为进 步通过解析能带对电子结构进行分析提供了可 能,从而对能带性质和意义等更容易理解 4.此外,在课堂上能够完成的习题也常用这个方 法,所以一定要掌握 5.从实用角度,它远不如近自由电子近似 http://10.107.0.68/igche/ 紧束缚近似
http://10.107.0.68/~jgche/ 紧束缚近似 2 本讲目的:紧束缚方法 1. 紧束缚方法所用基函数的数学性质差。它适合 描写电子的局域性质。紧束缚?价电子靠近 核,或,电子行为很局域局域在核附近 2. 一个好处是:仅用少量的基函数(原子轨道), 即可令人满意地描写共价、离子晶体的电子结 构。所以计算机条件差时,该方法用得较多 3. 另一好处是:能给出能带的解析形式,为进一 步通过解析能带对电子结构进行分析提供了可 能,从而对能带性质和意义等更容易理解 4. 此外,在课堂上能够完成的习题也常用这个方 法,所以一定要掌握 5. 从实用角度,它远不如近自由电子近似
第19讲、紧束缚方法 1.换个角度看能带 2.紧束缚近似的物理 3. Wannier,函数 4.孤立原子的波函数组成 Bloch和 5.s电子紧束缚能带 6.原子轨道线性组合LCAO方法 视野拓展→经验参数紧束缚方法 http://10.107.0.68/igche/ 紧束缚近似
http://10.107.0.68/~jgche/ 紧束缚近似 3 第19讲、紧束缚方法 1. 换个角度看能带 2. 紧束缚近似的物理 3. Wannier函数 4. 孤立原子的波函数组成Bloch和 5. s电子紧束缚能带 6. 原子轨道线性组合(LCAO)方法 视野拓展经验参数紧束缚方法
1、换个角度看能带 紧束缚近似的物理 *从近自由电子近似角度看,什么是能带? #连续的能带被 Bragg反射打断,产生能隙,宽度 2V(K),与反射强度有关。但是能带宽度呢? *紧束缚方法,零级近似:将每个原子看作与周围原 子无相互作用,其解是N个孤立原子的N重简并的 解,孤立原子的分裂能级即N重简并能级 微扰法:N重孤立原子的简并解线性组合→N重简并 能级在简并微扰作用下打开→形成能带,宽度由相 互作用强度定 紧束缚近似的数学v(k,r)=v(k+K,r) * Bloch定理推论二,Boch函数也是倒罕间周期函数 也可以在实空间作傅立叶展开→ Wannier函数 http://10.107.0.68/igche/ 紧束缚近似
http://10.107.0.68/~jgche/ 紧束缚近似 4 1、换个角度看能带 • 紧束缚近似的物理 * 从近自由电子近似角度看,什么是能带? 连续的能带被Bragg反射打断,产生能隙,宽度 =2|V(K)|,与反射强度有关。但是能带宽度呢? * 紧束缚方法,零级近似:将每个原子看作与周围原 子无相互作用,其解是N个孤立原子的N重简并的 解,孤立原子的分裂能级即N重简并能级 * 微扰法:N重孤立原子的简并解线性组合N重简并 能级在简并微扰作用下打开形成能带,宽度由相 互作用强度定 • 紧束缚近似的数学 * Bloch定理推论二,Bloch函数也是倒空间周期函数 * 也可以在实空间作傅立叶展开Wannier函数 (k , r ) (k K , r )
紧束缚与近自由电子近似属两个极端 紧束缚?从波函数 *价电子被核的正电 Na|2,22,2p32 荷紧紧地束缚在原 子核的周围 #孤立原子的情形 #价电子很局域 *只与邻近原子作用 #作用范围有限 紧束缚近似→共价 晶体、离子晶体 近自由电子近似→ 金属 http://10.107.0.68/igche/ 紧束缚近似
http://10.107.0.68/~jgche/ 紧束缚近似 5 紧束缚与近自由电子近似属两个极端 • 紧束缚?从波函数 * 价电子被核的正电 荷紧紧地束缚在原 子核的周围 孤立原子的情形 价电子很局域 * 只与邻近原子作用 作用范围有限 • 紧束缚近似共价 晶体、离子晶体 • 近自由电子近似 金属
分裂能级成能带 Hy=EU, y=C19,+C2 E=6子士(n1 原子组成一维无腰链回 N=1 假定孤立原子只有 个S轨道 2个原子相互作用 *2个孤立原子的简并 能级分裂,形成成键 态和反键态其能 级分别比孤立轨道能 级低和高 , 链越来越长,原来分 裂的能级现形成连续 4日,····… 的许可能级→能带 “s”band http://10.107.0.68/igche/ 紧束缚近似
http://10.107.0.68/~jgche/ 紧束缚近似 6 分裂能级成能带 • 原子组成一维无限链 • 假定孤立原子只有一 个 s轨道 • 2个原子相互作用 * 2个孤立原子的简并 能级分裂,形成成键 态和反键态——其能 级分别比孤立轨道能 级低和高 • 链越来越长,原来分 裂的能级现形成连续 的许可能级 能带 1 12 2 1 1 2 2 , ˆ E V E C C 原子 H
两种近似→不同侧重→物理原因是什么? 自由电子近似 →在布里渊区边界附近,简并打开形成的是禁带! *因为、只因为满足布里渊区边界反射条件的电子(波 长)才能形成驻波,具有这样波长(对应特定的能量 的电子不允许存在→能隙 ·紧束缚近似 →孤立原子靠近,其简并能级展宽形成的是能带! *两个具有相同能级(简并)的原子相互靠近,相互作 用后分裂成比原能级低的成键态和比原能级高的反 键态;但原子越远,这种作用就越弱,分裂就越 小;很多原子形成晶体,导致原简并能级→能带 http://10.107.0.68/igche/ 紧束缚近似
http://10.107.0.68/~jgche/ 紧束缚近似 7 两种近似不同侧重物理原因是什么? • 自由电子近似 在布里渊区边界附近,简并打开形成的是禁带! * 因为、只因为满足布里渊区边界反射条件的电子(波 长)才能形成驻波,具有这样波长(对应特定的能量) 的电子不允许存在能隙 • 紧束缚近似 孤立原子靠近,其简并能级展宽形成的是能带! * 两个具有相同能级(简并)的原子相互靠近,相互作 用后分裂成比原能级低的成键态和比原能级高的反 键态;但原子越远,这种作用就越弱,分裂就越 小;很多原子形成晶体,导致原简并能级能带
2、紧束缚近似的物理←微扰 从自由电子到晶体能带 自由电子在晶体势场中受散射 *原连续的能带E(k),在 Brillouin区边界产生能隙 从孤立原子能级到晶体能带 *孤立原子构成晶体,电子束缚在孤立原子周围 *整个M个孤立原子的系统是一个N重简并的系统 减小晶格常数至实际数值 #孤立原子不再孤立,波函数发生交迭,相互作用 N重简并的孤立原子能级消除简并,展宽成能带 http://10.107.0.68/igche/ 紧束缚近似
http://10.107.0.68/~jgche/ 紧束缚近似 8 2、紧束缚近似的物理微扰 • 从自由电子到晶体能带 * 自由电子在晶体势场中受散射 * 原连续的能带E(k),在Brillouin区边界产生能隙 • 从孤立原子能级到晶体能带 * 孤立原子构成晶体 ,电子束缚在孤立原子周围 * 整个N个孤立原子的系统是一个N重简并的系统 * 减小晶格常数至实际数值 孤立原子不再孤立,波函数发生交迭,相互作用 N重简并的孤立原子能级消除简并,展宽成能带
微扰的观点 零级近似—一N重简并的孤立原子解 假定原胞内只有一个原子,每个格点都有相同的孤 立原子的解 *都有相同的本征能量,即N重简并能级二 都有相同的波函数,但束缚在各自格点上 微扰势—把孤立原子势看作零级近似 而晶体势减去孤立原子势看作微扰 http://10.107.0.68/igche/ 紧束缚近似
http://10.107.0.68/~jgche/ 紧束缚近似 10 微扰的观点 • 零级近似——N重简并的孤立原子解 * 假定原胞内只有一个原子,每个格点都有相同的孤 立原子的解 * 都有相同的本征能量,即N重简并能级 * 都有相同的波函数,但束缚在各自格点上 • 微扰势——把孤立原子势看作零级近似 * 而晶体势减去孤立原子势看作微扰