第二章均匀物质的热力学性质 1.基本热力学函数 2.麦氏关系及应用 3.气体节流和绝热膨胀
第二章 均匀物质的热力学性质 1. 基本热力学函数 2. 麦氏关系及应用 3. 气体节流和绝热膨胀
§21基本热力学函数 1.内能 dU=TdS-pdk U=U(, v),dvs/aU aU ds+ dy aU aU =7(S,V)2p p(S,v) S a-U aT ap avas aSa O aS
§2.1 基本热力学函数 1. 内能 dU = TdS − pdV V V U S S U U U S V U V S ( , ), d d d + = = ( , ), p(S,V) V U T S V p S U T V S = = = − = S V U V S U = 2 2 S S V p V T = −
2.焓H=U+p dh=Tds+vd H=H(S, P),dHa aH ds+ T=/OH aH T(S, P), v V(S, p) a OH aT as aSap aS
2. 焓 dH = TdS +Vdp p p H S S H H H S p H p S ( , ), d d d + = = ( , ), V(S, p) p H T S p V S H T p S = = = = S p H p S H = 2 2 H =U + pV S S p V p T =
3.自由能F=U-7S dF=-SdT- pdy F=F(T,V), dF_OF OF dT+ dT OT aF aF S s(T,V),p= T. aT 02F02F aS ap ovat aTaV aT OF OF OF U=F+TS=F H=U+ pV=F aT aT
3. 自由能 dF = −SdT − pdV T V F T T F F F T V F V T ( , ), d d d + = = ( , ), ( , ) V T F F S S T V p p T V T V = − = = − = T V F V T F = 2 2 F =U −TS T V F U F TS F T = + = − V V T F V T F H U pV F T − = + = − T T V p V S =
4.吉布斯函数(自由焓)G=H-7S=F+p dG=-SdT+vdp G=G(,p),dG=/oG aG dtt dp aT P aG aG S =S(T,p)2 y(T, p) aT P丿 a2G aG aS apot oTop aT H=G+TS=G-TaG G aG U=H-pV=G aT OT
4. 吉布斯函数(自由焓) dG = −SdT +Vdp p p G T T G G G T p G p T ( , ), d d d + = = ( , ), V (T, p) p G S T p V T G S p T = = = = − T p G p T G = 2 2 G = H −TS = F + pV T p G H G TS G T = + = − p T p G p T G U H pV G T − = − = − T T p V p S = −
§22麦氏关系及应用 1.麦克斯韦关系 aT ap S U (-)S aT aS H aS F\oV丿 aT (-)pT aS P OT
§2.2 麦氏关系及应用 S S V p V T = − S S p V p T = T T V p V S = T T p V p S = − U H F G (−)S (−) p V T 1. 麦克斯韦关系
2.基本热力学函数的确定 内能同U=7S-pd aS aS S=S(T,V),ds dT+ dE aT aS O aS aS aT U=U(, V), du p dy du dt+ aT aU dT+ aT S aU aT aT aT dU=CpdT+ )叫 ds= dr op dv T aT
2. 基本热力学函数的确定 内能 dU = TdS − pdV V V U T T U U U T V U V T ( , ), d d d + = = V V S T T S S S T V S V T ( , ), d d d + = = p V V S T T T S U T V T d d d − + = T T V p V S = V V V T S T T U C = = p T p T V U T V − = p V T p U C T T V d V d d − = + V T p T T C S V V d d d = +
aCy O2S aS aS T ap T aVot aTaV aT2 aT C(7,T)=C1(T,V)+ 6(2/d p=C(T,Vp=p(T,V)由实验测定, U=U(7,V),S=S(7,V)即可确定
CV 0 = CV (T,V0 ), p = p(T,V) 由实验测定, T V V T p T T V S T V T S T V C = = = 2 2 2 2 = + V V V V V V T p C T V C T V T 0 ( , ) ( , ) d 2 2 0 U =U(T,V), S = S(T,V) 即可确定。 T T V p V S = T CV V0 V
焓dH=Tds+ap aS aS S=ST,P), ds dT+ OT aS as\dT+ aT H=H(T,p),d〃(0/xpp dh=t aT aH dt+ OT aH aS aH OT aT T dh =CdT+V-TI ds=PdT aT OT
焓 dH = TdS +Vdp p p H T T H H H T p H p T ( , ), d d d + = = p p S T T S S S T p S p T ( , ), d d d + = = V p p S T T T S H T p T d d d + + = T T p V p S = − p p p T S T T H C = = T T p V V T p H = − p T V H C T V T p d p d d = + − p T V T T C S p p d d d = −
aC S S 02 aS T T apot aTop aT2 aT 02V 1(G,p)=C(7,P)-7 aT2 CD=C(7,P,V=(72p)由实验测定, H=H(T,p),S=S(7,P)即可确定
Cp 0 =Cp (T, p0 ),V =V(T, p) 由实验测定, T p p T V T T p S T p T S T p C = − = = 2 2 2 2 = − p p p p p p T V C T p C T p T 0 ( , ) ( , ) d 2 2 0 H = H(T, p), S = S(T, p) 即可确定。 T T p V p S = − T p 0 p Cp