
s6.5程函(Eikonal)近似一、Eikonal近似(E>>V,但不要求满足波恩近似条件)若V(x)在入射粒子波长跨度变化微小,可用半经典图像,h?k?(VS)?yr(+) ~ exp(iS(x) / h)V2m2mS2m v(/b2 + z2)J/2dz+c[k2-hh方向2mv(/b2 + z2)J/2 - k)dz1.2kz散射区域hmV(Vb2 + z2)dz=kz经典直线轨迹沿着方向,x=r,而b=b|是碰撞参数n?kkeV(Vb? + z2)dzyr(+)(x) = yr(+)(b + z2)exp(2元)3/2h?k4m元[v|y(t)f(k,k)h?ik.4m元(Vb2 + z2)dz"h22元n尽管波函数非入射波加出射球面波形式,结果有优于一阶波恩近似的迹象
§6.5 程函(Eikonal)近似 ◼ 一、Eikonal近似 (E>>V,但不要求满足波恩近似条件) ◼ 若V(x)在入射粒子波长跨度变化微小,可用半经典图像, 2 2 2 ( ) 2 2 S k V E m m + = = ( ) exp( ( ) / ) iS x + + 2 2 '2 1/2 ' 2 2 2 '2 1/2 ' 2 2 '2 ' 2 2 [ ( )] 2 {[ ( )] } ( ) z z z S m k V b z dz c m kz k V b z k dz m kz V b z dz k − − − = − + = + − + − − + ( ) ( ) 2 '2 ' 3/2 2 ( ) ( ) exp[ ( ) ˆ (2 ) ikz e im z x b zz V b z dz k + + − − = + + 2 ' ' ( ) 2 2 ' ' ' ' 3 ' 2 '2 2 ''2 '' 2 3/2 3/2 2 4 ( , ) 4 ( ) exp[ ( ) ] (2 ) (2 ) ik x ik x z m f k k k V m e e im d x V b z V b z dz k + − − = − − = − + + 尽管波函数非入射波加出射球面波形式,结果有优于一阶波恩近似的迹象

、Eikonal近似(续)md"x'V(b2 +z2)e1(K-K")x*f(E.k)V(Vb2+z2)dz"exp2元h2h?柱坐标d°x=bdbdΦ,dz二方向h散射区城(k- k): x = (k -k).(b + z2)-k.b+zk(l-cos0)=-k(sin0x+cos2).b(cosdx+sinΦ)=-kbocosΦ" d,e-ikbo cos = 2元J(kb0)b2+z2)dz[ dzV(Nb2 + 2)ep+azh?kle+z2h2-imV(Vb2 + z2)(b2+z)dzin?kin?k/2[" v(Vb2 + z2)dz ] - 1)h2 kmmf(k',k) = -ik[° dbbJ.(kbo) [e2iA(b) - 1] ; (v(Vb2 + z2)dz△(b) =2khe/
一、Eikonal近似(续) ◼ 柱坐标 3 ' ' b d x bdbd dz = ' ' ' ' ' ' ( ) ( ) ( )ˆ (1 cos ) (sin cos ) (cos sin ) cos ˆ ˆ ˆ ˆ b b b k k x k k b z z k b z k k x z b x y kb − = − + = − + − − + + − ' ' 3 ' 2 '2 ( ') ' 2 ''2 '' 2 2 ( , ) ( ) exp[ ( ) ] 2 z m im i k k x f k k d x V b z e V b z dz k − − − = − + + 2 cos 0 0 2 ( ) b ikb b d e J kb − = 2 '2 ' 2 '2 ' 2 2 2 '2 ' 2 2 ( ) ( ) 2 2 2 2 2 2 2 2 ( ) 2 '2 ' 2 ( )e ( ) e ( ) e | {exp[ ( ) ] 1} z z z im im V b z dz V b z dz k k im V b z dz k k dzV b z V b z d imV b z i k i k im V b z dz m m k − − − − − + + − − − + − − + = + − + − = = + − ' 2 ( ) 2 2 0 2 0 ( , ) ( )[ 1]; ( ) ( ) 2 i b m f k k ik dbbJ kb e b V b z dz k − − = − − = +

分波和程函近似分波:f(0) = Z(21 + 1)e0 sin 8,P(cos 0)程函:f(',k) = -ik[ dbbJ(kbo) [e2ia(b) - 1]kb=bp/h=1Imax = kR一" d(kb) [2kbJ。(kbo)eiA(b) sin A(b)](kbo)2de,e-ikbocos.~1对小e(半经典路径),J(kbe)=22.71021(1 + 1)@2P(cos )21(21 + 1)eiA(b) sin A(b)P,(cos 0) f(E,K)=1/Fk1=01=kR4元 分波相移:8, → A(b) lb=1/k(21 + 1) sin 8Orotk2对硬球散射,kRtan? ,[j,(kR) / n,(kR) J24元kR2元R2sin? 8, = 1+ tan' ,atotk221 + [j,(kR) / n,(kR)J[j,(kR) ?大kR>sin?(kR -高能散射总截面(反射+阴影)[j,(kR)? + [n,(kR)?2仅为低能散射总截面的一半
二、分波和程函近似 ◼ 分波: ◼ 程函: ◼ 对小θ(半经典路径), ◼ 分波相移: ◼ 对硬球散射, max kb bp l / l kR = = = ' 2 ( ) 0 0 ( ) 0 0 ( , ) ( )[ 1] 1 ( )[2 ( ) sin ( )] R i b R i b f k k ik dbbJ kb e d kb kbJ kb e b k = − − = 1 ( ) (2 1) sin (cos ) l i k l l l f l e P k = + 2 2 cos 0 0 2 2 2 1 ( ) ( ) 1 2 2 ( 1) 1 1 (cos ) 2 2 b ikb b l kb J kb d e l l l P − = − + = − − max ' ( ) / 0 1 ( , ) (2 1) sin ( ) (cos ) | l i b l b l k l f k k l e b P k = = → + / ( ) | l b l k b → = 2 2 0 4 (2 1)sin l kR tot l l l k = = + 2 2 2 2 2 2 大 2 2 2 tan [ ( ) / ( )] sin 1 tan 1 [ ( ) / ( )] [ ( )] sin ( ) [ ( )] [ ( )] 2 l l l l l l l l kR l l j kR n kR j kR n kR j kR l kR j kR n kR = = + + = ⎯⎯⎯⎯⎯→ − + 2 2 4 2 2 tot kR kR R k = 高能散射总截面(反射+阴影) 仅为低能散射总截面的一半

12(21 + 1)ei8 sin 8,P(cos 0)f.(0)、光学定理的物理解释k =0+ NC(21 + 1)e2i0 p(cos 0)+f阴影反时2ik2k1=01=0e-i(kr-In)eikr1Z(21 + 1) P(cos 0)后一项为阴2([1 +2ikf,(k))2ik21rr影项是由于:1if明影(21 + 1)J.(10)dl(21 + 1)P(cos 0)且:2k2k1=0i(koR)J.(kaR)iRJ.(kRO)kbJ.(kb0)kdb :ko?0R"[J,(kRO) [J,(s) P?sin0d0=2元R2元R2 fud2 = 22元0?50=kR2元2 , (21 + 1)[P(cos 0)Pd cos 0daf.反射4k2-0元元((kR + 1)2 = 元R?(21 + 1) =k2k21=0:28,=2kR-1元2元Z(21 + 1) cos 28, ~ 0 *fda Re(f阴影反射k2=28,-1-元14元4元14元2元(kR)2 = 2元R2 = 0totm f(0)(0)(21 +1)P(1) 用路kkk2kk21-
三、光学定理的物理解释 + 0 2 反射 阴影 0 0 1 ( ) (2 1) sin (cos ) (2 1) (cos ) (2 1) (cos ) 2 2 l l kR i k l l l i kR kR l l l l f l e P k l e P l P i f f ik k = = = = + + + = + = | d max max 1 2 2 2 反射 2 1 0 2 2 2 2 0 2 | (2 1)[ (cos )] cos 4 (2 1) ( 1) l kR l l l kR l f l P d k l kR R k k = − = = = = + = + = + max 阴影 0 0 0 1 1 0 2 0 (2 1) (cos ) (2 1) ( ) 2 2 ( ) ( ) ( ) ( ) l kR l l R i i f l P l J l dl k k i i k R J k R iRJ kR kbJ kb kdb k k = = + + = = R | d 2 2 2 2 2 2 1 1 阴影 2 0 0 [ ( )] [ ( )] | 2 sin 2 kR J kR J f d R d R = * 阴影 反射 2 2 Re( ) (2 1)cos 2 0 l l d f f l k = + 1 2 2 2 l l kR l − = − = − ( ) ( ) 3/2 1 (cos ) (2 1) {[1 2 ( )] } (2 ) 2 ikr i kr l l l l P e e x l ikf k ik r r − − + 后一项为阴 = + + − 影项是由于: 且: 2 2 阴影 2 0 4 4 4 1 2 Im (0) Im (0) (2 1) (1) ( ) 2 2 kR l tot l f f l P kR R k k k k k = = + = =

86.8散射中对称性的考虑十(球心势,且势与自旋无关)一、全同粒子间的散射自旋为0(或整数,但仅考虑自旋对称态)Qlky→ek+ + e-ik.r + [r(0) + f( - 0)] ekX=X,-X2eik.x + f(e)u(+)r7da= [f() + f(元 - ) = [F() + |f(元 - ) + 2 Re[f(0)f*(元 - )]dada对=元必比不考虑全同性时大2'dn自旋1/2,对自旋非极化粒子束d% = r(0) + f( - 0) +r(0) - f(元 - 0)daf(0) +|f( -) - Re[f()F*(元 -)]da元对=必比不考虑全同性时小2dp
§6.8 散射中对称性的考虑 ◼ 一、全同粒子间的散射(球心势,且势与自旋无关) ◼ 自旋为0(或整数,但仅考虑自旋对称态) ◼ 自旋1/2,对自旋非极化粒子束 ( ) 1 2 ( ) [ ( ) ( )] ikr ikr ik x ik x ik x e e x x x e f e e f f r r + − = − + ⎯⎯⎯⎯⎯⎯→ + + + − = 2 2 2 * ( ) ( ) ( ) ( ) 2 Re[ ( ) ( )] 对 , 必比不考虑全同性时大 2 d f f f f f f d d d = + − = + − + − = 2 2 2 2 * 1 3 ( ) ( ) ( ) ( ) 4 4 ( ) ( ) Re[ ( ) ( )] 对 , 必比不考虑全同性时小 2 d f f f f d f f f f d d = + − + − − = + − − −

、对称操作(无关全同性)1、幺正对称算符UH,U+ = H; UVU+ = V; → UTU+ = T==→《=《UTU=《宇称对称性:(-K'||-K)= (K'|k)otatec转动对称性:(KK)仅依赖于k与K的相对朝向2.反幺正对称算符(时间反演)1OTO-I =V+V=TE-H。-ic[α) = T[K),(β|= (K'],]α) = OT[K) = OTO-O|K) = T+[-k(K'|T[K) = (β[α) = (α|β) =(-IT]-)
二、对称操作(无关全同性) ◼ 1、幺正对称算符 ◼ 宇称对称性: ◼ 2. 反幺正对称算符(时间反演) 0 0 UH U H UVU V UTU T ; ; + + + = = → = k U k k U k k T k k U UTU U k k T k , ' ' ' ' ' + + → = = − − = k T k k T k ' ' 转动对称性:k T k ' 仅依赖于k与k'的相对朝向 1 0 1 T V V V T . E H i − + = + + = − − 1 T k k T k T k T k , ' , − + = = = = = − k T k k T k ' | ' = = = − −

3.时间反演+宇称对称性("|)(O作用)=(-I|-")(元作用)=《 I|");f(,)= f(',)dod('→)(细致平衡)( ) :dado对有自旋粒子《K",m。"|T|k,m)= 1-2m,+2m(-k,-m。IT|-k',-m"i-2m.+2mg(k,-m IT|',-m对自旋非极化初末态:d(k→ k") = d(k' →k)(初态平均、末态求和)dpdQ
3. 时间反演+宇称对称性 ◼ 对有自旋粒子 ◼ 对自旋非极化初末态: ( ) ' ( 作用) | '( 作用) | ' ; ( , ') ( ', ) ( ') ( ' ) 细致平衡 k T k k T k k T k f k k f k k d d k k k k d d = − − = = → = → ' ' 2 2 2 2 ', ' , , | ', ' , | ', ' s s s s m m s s s s m m s s k m T k m i k m T k m i k m T k m − + − + = − − − − = − − ( ') ( ' ) ( ) 初态平均、末态求和 d d k k k k d d → = →

作业:6.8复习
作业:6.8 复习