LINGO80 for windows软件及应用(编译) 万保成 前言 运筹学,即最优化理论,或在有的领域被称为管理科学,是近几十年发展和形成的一门新兴的应 用性学科。她主要解决最优生产计划、最优分配、最优设计、最优决策、最佳管理等最优化问题。主要研 究方法是定量化、系统化和模型化方法,特别是运用各种数学模型和技术来解决问题。 我们遇到的实际问题一般规模都较大,即使建立了模型,找到了解的方法,对于庞大的计算量 是望而却步。“工欲善其事,必先利其器”,手中有一个方便的求解最优化问题的工具就显得很重要。LI NGO系列优化软件包就给我们提供了理想的选择 LINGO是一个利用线性规划和非线性规划来简洁地阐述、解决和分析复杂问题的简便工具。其特 点是程序执行速度很快,易于输入、修改、求解和分析一个数学规划问题,因此 LINGO在教育、科研和工 业界得到了广泛应用。教学版和发行版的主要区别在于对优化问题的规模(变量和约束的个数)有不同的 限制。 LINGO软件包有多种版本,但其软件内核和使用方法类似。详细情况可上网访问 LINGO软件网站:W wW lindo. com 关于LING080的资料市面上非常少,即使有也仅是一个附录,为此编写了本教程。学完本书后, 应该能够运用LING8.0建模语言表述实际问题,能够设置算法的基本选项,正确理解求解过程所显示的状 态,最后能正确解读输出结果。作为一门建模语言,它非常灵活,不是本书所能完全包含的,“熟能生出 百巧来”,只有用的多了才能掌握 LINGO的强大功能 由于水平所限,缺点和错误之处在所难免,请大家批评指正。 2004年8月 注意:章后有表示该章内容可用。点击章上文字(超连接)即可
1 LINGO8.0 for windows 软件及应用(编译) 万保成 前 言 运筹学,即最优化理论,或在有的领域被称为管理科学,是近几十年发展和形成的一门新兴的应 用性学科。她主要解决最优生产计划、最优分配、最优设计、最优决策、最佳管理等最优化问题。主要研 究方法是定量化、系统化和模型化方法,特别是运用各种数学模型和技术来解决问题。 我们遇到的实际问题一般规模都较大,即使建立了模型,找到了解的方法,对于庞大的计算量也 是望而却步。“工欲善其事,必先利其器”,手中有一个方便的求解最优化问题的工具就显得很重要。LI NGO 系列优化软件包就给我们提供了理想的选择。 LINGO 是一个利用线性规划和非线性规划来简洁地阐述、解决和分析复杂问题的简便工具。其特 点是程序执行速度很快,易于输入、修改、求解和分析一个数学规划问题,因此 LINGO 在教育、科研和工 业界得到了广泛应用。教学版和发行版的主要区别在于对优化问题的规模(变量和约束的个数)有不同的 限制。LINGO 软件包有多种版本,但其软件内核和使用方法类似。详细情况可上网访问 LINGO 软件网站:w ww.lindo.com. 关于 LINGO8.0 的资料市面上非常少,即使有也仅是一个附录,为此编写了本教程。学完本书后, 应该能够运用 LINGO8.0 建模语言表述实际问题,能够设置算法的基本选项,正确理解求解过程所显示的状 态,最后能正确解读输出结果。作为一门建模语言,它非常灵活,不是本书所能完全包含的,“熟能生出 百巧来”,只有用的多了才能掌握 LINGO 的强大功能。 由于水平所限,缺点和错误之处在所难免,请大家批评指正。 编 者 2004 年 8 月 注意:章后有 表示该章内容可用。点击章上文字(超连接)即可
目录 § I LING0快速入门s §2LING0中的集e2.1为什么使用集2.2什么是集2.3模型的集部分2.3.1定义原始 集2.3.2定义派生集 §3模型的数据部分和初始部分63.1模型的数据部分3.1.1数据部分入门31.2 参数3.1.3实时数据处理3.1.4指定属性为一个值3.1.5数据部分的未知数值3.2模 的初始部分 §4 LINGO函数 641基本运算符41,1算术运算符41.2逻运算符413 关系运算符4.2数学函数4.3金融函数4.4概率函数4.5变量界定函数4.6集操 作函数4.7集循环函数4.8输入和输出函数4.9辅助函数 INGO Windows命令 5.1文件菜单5.2编辑菜单5.3 LINGO菜单5.4窗口 菜单5.5帮助菜单 §6LING0的命令行命令 §7综合举例 由于时间原因,§7节内容还没全部完成,抱歉!但为方便大家,还是先贴出来啦。 献丑! 参考文献 1.LING0用户指南( LINGO8.0的帮助文档) 2.朱德通编著.最优化模型与实验.上海:同济大学出版社,2003 3.何坚勇编著.运筹学基础.北京:清华大学出版社,2000 4.刁在筠郑汉鼎等编著.运筹学.北京:高等教育出版社,1996 5.姚恩瑜何勇等编著.数学规划与组合优化.杭州:浙江大学出版社,2001 6.H.P.威廉斯著.孟国璧等译.数学规划模型建立与计算机应用.北京:国防工业出版社,1991. 7.洪文朱广斌.整数规划下的最小生成树模型.安徽电气工程职业技术学院学报,2003.3,96-100. 8.姜启源谢金星叶俊编.数学模型(第三版).北京:高等教育出版社,2003 9.谢金星等编. LINDO- LINGO how to.网上下载,2004 2
2 目 录 §1 LINGO 快速入门 §2 LINGO 中的集 2.1 为什么使用集 2.2 什么是集 2.3 模型的集部分 2.3.1 定义原始 集 2.3.2 定义派生集 §3 模型的数据部分和初始部分 3.1 模型的数据部分 3.1.1 数据部分入门 3.1.2 参数 3.1.3 实时数据处理 3.1.4 指定属性为一个值 3.1.5 数据部分的未知数值 3.2 模 型的初始部分 §4 LINGO 函数 4.1 基本运算符 4.1.1 算术运算符 4.1.2 逻辑运算符 4.1.3 关系运算符 4.2 数学函数 4.3 金融函数 4.4 概率函数 4.5 变量界定函数 4.6 集操 作函数 4.7 集循环函数 4.8 输入和输出函数 4.9 辅助函数 §5 LINGO Windows 命令 5.1 文件菜单 5.2 编辑菜单 5.3 LINGO 菜单 5.4 窗口 菜单 5.5 帮助菜单 §6 LINGO 的命令行命令 §7 综合举例 由于时间原因,§7 节内容还没全部完成,抱歉!但为方便大家,还是先贴出来啦。 献丑! 参考文献 1. LINGO 用户指南(LINGO8.0 的帮助文档). 2. 朱德通 编著. 最优化模型与实验. 上海:同济大学出版社,2003. 3. 何坚勇 编著. 运筹学基础. 北京:清华大学出版社,2000. 4. 刁在筠 郑汉鼎 等编著. 运筹学. 北京:高等教育出版社,1996. 5. 姚恩瑜 何勇 等编著. 数学规划与组合优化. 杭州:浙江大学出版社,2001. 6. H.P.威廉斯 著. 孟国璧 等译. 数学规划模型建立与计算机应用. 北京:国防工业出版社,1991. 7.洪文 朱广斌. 整数规划下的最小生成树模型. 安徽电气工程职业技术学院学报,2003.3,96—100. 8. 姜启源 谢金星 叶俊编. 数学模型(第三版). 北京:高等教育出版社,2003. 9. 谢金星等编. LINDO-LINGO how to. 网上下载,2004
LⅠNGO是用来求解线性和非线性优化问题的简易工具。 LINGO内置了一种建立最优化 模型的语言,可以简便地表达大规模问题,利用 LINGO高效的求解器可快速求解并分析结 果 §1LNGO快速入门 当你在 windows下开始运行 LINGO系统时,会得到类似下面的一个窗口: ELINGO-LIRGO lodel-LINGO1 Ei1 e Edit LING置 indow Help 2LIRGO odel-LIHGO1 外层是主 口之下。 在主窗口By NUM 立的模型 都都要在该窗口内编码实现。下面举两个例子。 例1.1如何在 LINGO中求解如下的LP问题 min x1+3x x1+x,≥350 2x1+x≤600 ≥0 在模型窗口中输入如下代码: min=2*x1+3*x2 x1+x2>=350 x1>=100 然后点击工具条上的按钮即可 例1.2使用 LINGO软件计算6个发点8个收点的最小费用运输问题。产销单位运价如 位\销地 运 BI B2 B产量 产地 A 6 5
3 LINGO 是用来求解线性和非线性优化问题的简易工具。LINGO 内置了一种建立最优化 模型的语言,可以简便地表达大规模问题,利用 LINGO 高效的求解器可快速求解并分析结 果。 §1 LINGO 快速入门 当你在 windows 下开始运行 LINGO 系统时,会得到类似下面的一个窗口: 外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。 在主窗口内的标题为 LINGO Model – LINGO1 的窗口是 LINGO 的默认模型窗口,建立的模型 都都要在该窗口内编码实现。下面举两个例子。 例 1.1 如何在 LINGO 中求解如下的 LP 问题: , 0 2 600 100 350 . . min 2 3 1 2 1 2 1 1 2 1 2 + + + x x x x x x x st x x 在模型窗口中输入如下代码: min=2*x1+3*x2; x1+x2>=350; x1>=100; 2*x1+x2<=600; 然后点击工具条上的按钮 即可。 例 1.2 使用 LINGO 软件计算 6 个发点 8 个收点的最小费用运输问题。产销单位运价如 下表。 单 位 销地 运 价 产地 B1 B2 B3 B4 B5 B6 B7 B8 产量 A1 6 2 6 7 4 2 5 9 60 A2 4 9 5 3 8 5 8 2 55
2 4 3 51 AAAA 572 6 7 43 5|5 52 销量 使用 LINGO软件,编制程序如下: !6发点8收点运输问题 sets arehouses/whl.who/: capacit vendors/v1. v8/: demand inks(warehouses, vendors): cost, volume endsets !目标函数 min=@sum (links: cost*volume)i 需求约束 @for (vendors (J) @sum(warehouses(I): volume(I, J))=demand(J)) 产量约束 @for @sum(vendors (J): volume(I, J))<=capacity (I)) !这里是数据; data capacity=605551434152; demand=3537223241324338 cost=62674295 521 39352 87978 54221 23153 552 enddata 然后点击工具条上的按钮想即可 为了能够使用 LINGO的强入功能,接着第二节的学习吧
4 A3 5 2 1 9 7 4 3 3 51 A4 7 6 7 3 9 2 7 1 43 A5 2 3 9 5 7 2 6 5 41 A6 5 5 2 2 8 1 4 3 52 销量 35 37 22 32 41 32 43 38 使用 LINGO 软件,编制程序如下: model: !6 发点 8 收点运输问题; sets: warehouses/wh1..wh6/: capacity; vendors/v1..v8/: demand; links(warehouses,vendors): cost, volume; endsets !目标函数; min=@sum(links: cost*volume); !需求约束; @for(vendors(J): @sum(warehouses(I): volume(I,J))=demand(J)); !产量约束; @for(warehouses(I): @sum(vendors(J): volume(I,J))<=capacity(I)); !这里是数据; data: capacity=60 55 51 43 41 52; demand=35 37 22 32 41 32 43 38; cost=6 2 6 7 4 2 9 5 4 9 5 3 8 5 8 2 5 2 1 9 7 4 3 3 7 6 7 3 9 2 7 1 2 3 9 5 7 2 6 5 5 5 2 2 8 1 4 3; enddata end 然后点击工具条上的按钮 即可。 为了能够使用 LINGO 的强大功能,接着第二节的学习吧
§2LNGo中的集 对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体 交通工具和雇工等等。 LINGO允许把这些相联系的对象聚合成集(sets)。一旦把对象聚合 成集,就可以利用集来最大限度的发挥 LINGO建模语言的优势 现在我们将深入介绍如何创建集,并用数据初始化集的属性。学完本节后,你对基于建 模技术的集如何引入模型会有一个基本的理解。 2.1为什么使用集 集是 LINGO建模语言的基础,是程序设计最强有力的基本构件。借助于集,能够用一个 单一的、长的、简明的复合公式表示一系列相似的约東,从而可以快速方便地表达规模较大 的模型。 2.2什么是集 集是一群相联系的对象,这些对象也称为集的成员。一个集可能是一系列产品、卡车或 雇员。每个集成员可能有一个或多个与之有关联的特征,我们把这些特征称为属性。属性值 可以预先给定,也可以是未知的,有待于 LINGO求解。例如,产品集中的每个产品可以有 个价格属性;卡车集中的每辆卡车可以有一个牵引力属性;雇员集中的每位雇员可以有一个 薪水属性,也可以有一个生日属性等等。 LINGO有两种类型的集:原始集( primitive set)和派生集( derived set) 个原始集是由一些最基本的对象组成的 个派生集是用一个或多个其它集来定义的,也就是说,它的成员来自于其它已存在的 集。 2.3模型的集部分 集部分是LIN模型的一个可选部分。在LINO模型中使用集之前,必须在集部分事先 定义。集部分以关键字“sets:”开始,以“ endsets”结東。一个模型可以没有集部分,或 有一个简单的集部分,或有多个集部分。一个集部分可以放置于模型的任何地方,但是一个 集及其属性在模型约束中被引用之前必须定义了它们。 2.3.1定义原始集 为了定义一个原始集,必须详细声明: ·集的名字 ·可选,集的成员 可选,集成员的属性 定义一个原始集,用下面的语法: setname [/member list/[:attribute list] 注意:用“”表示该部分内容可选。下同,不再赘述。 Setname是你选择的来标记集的名字,最好具有较强的可读性。集名字必须严格符合标 准命名规则:以拉丁字母或下划线()为首字符,其后由拉丁字母(A-Z)、下划线、阿拉 伯数字(0,1,…,9)组成的总长度不超过32个字符的字符串,且不区分大小写 注意:该命名规则同样适用于集成员名和属性名等的命名。 Member list是集成员列表。如果集成员放在集定义中,那么对它们可采取显式罗列和 隐式罗列两种方式。如果集成员不放在集定义中,那么可以在随后的数据部分定义它们。 ①当显式罗列成员时,必须为每个成员输入一个不同的名字,中间用空格或逗号搁开, 允许混合使用。 例21可以定义一个名为 students的原始集,它具有成员John、Ji1l、Rose和Mike, 属性有sex和age sets tudents/John Jill, Rose Mike/: sex, agei ndsets ②当隐式罗列成员时,不必罗列出每个集成员。可采用如下语法:
5 §2 LINGO 中的集 对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、 交通工具和雇工等等。LINGO 允许把这些相联系的对象聚合成集(sets)。一旦把对象聚合 成集,就可以利用集来最大限度的发挥 LINGO 建模语言的优势。 现在我们将深入介绍如何创建集,并用数据初始化集的属性。学完本节后,你对基于建 模技术的集如何引入模型会有一个基本的理解。 2.1 为什么使用集 集是 LINGO 建模语言的基础,是程序设计最强有力的基本构件。借助于集,能够用一个 单一的、长的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大 的模型。 2.2 什么是集 集是一群相联系的对象,这些对象也称为集的成员。一个集可能是一系列产品、卡车或 雇员。每个集成员可能有一个或多个与之有关联的特征,我们把这些特征称为属性。属性值 可以预先给定,也可以是未知的,有待于 LINGO 求解。例如,产品集中的每个产品可以有一 个价格属性;卡车集中的每辆卡车可以有一个牵引力属性;雇员集中的每位雇员可以有一个 薪水属性,也可以有一个生日属性等等。 LINGO 有两种类型的集:原始集(primitive set)和派生集(derived set)。 一个原始集是由一些最基本的对象组成的。 一个派生集是用一个或多个其它集来定义的,也就是说,它的成员来自于其它已存在的 集。 2.3 模型的集部分 集部分是 LINGO 模型的一个可选部分。在 LINGO 模型中使用集之前,必须在集部分事先 定义。集部分以关键字“sets:”开始,以“endsets”结束。一个模型可以没有集部分,或 有一个简单的集部分,或有多个集部分。一个集部分可以放置于模型的任何地方,但是一个 集及其属性在模型约束中被引用之前必须定义了它们。 2.3.1 定义原始集 为了定义一个原始集,必须详细声明: ·集的名字 ·可选,集的成员 ·可选,集成员的属性 定义一个原始集,用下面的语法: setname[/member_list/][:attribute_list]; 注意:用“[]”表示该部分内容可选。下同,不再赘述。 Setname 是你选择的来标记集的名字,最好具有较强的可读性。集名字必须严格符合标 准命名规则:以拉丁字母或下划线(_)为首字符,其后由拉丁字母(A—Z)、下划线、阿拉 伯数字(0,1,…,9)组成的总长度不超过 32 个字符的字符串,且不区分大小写。 注意:该命名规则同样适用于集成员名和属性名等的命名。 Member_list 是集成员列表。如果集成员放在集定义中,那么对它们可采取显式罗列和 隐式罗列两种方式。如果集成员不放在集定义中,那么可以在随后的数据部分定义它们。 ① 当显式罗列成员时,必须为每个成员输入一个不同的名字,中间用空格或逗号搁开, 允许混合使用。 例 2.1 可以定义一个名为 students 的原始集,它具有成员 John、Jill、Rose 和 Mike, 属性有 sex 和 age: sets: students/John Jill, Rose Mike/: sex, age; endsets ② 当隐式罗列成员时,不必罗列出每个集成员。可采用如下语法:
setname/member. member/[: attribute list 这里的 member是集的第一个成员名, member是集的最末一个成员名。 LINGO将自动产生 中间的所有成员名。 LINGO也接受一些特定的首成员名和末成员名,用于创建一些特殊的集 列表如下: 隐式成员列表格式 示例 所产生集成员 1,2,3,4,5 String. String Car2. car14 Car2. Car3, Car4.. Car14 DayM. dayN on, Tue, Wed. Thu. fri Month. month Oct.. Jan Oct, Nov, Dec, Jan MonthYearM. MonthYearN Oct. Jan2002 0ct001,Nov2001,Dec2001,Jan2002 ③集成员不放在集定义中,而在随后的数据部分来定义 例22 集部分; sets students: sex, agei endsets !数据部分; students, sex, age= John 1 16 Ji11014 Rose 0 17 Mike 1 13: 注意:开头用感叹号(!),末尾用分号(;)表示注释,可跨多行 在集部分只定义了一个集 students,并未指定成员。在数据部分罗列了集成员John Ji11、Rose和Mike,并对属性sex和age分别给出了值 集成员无论用何种字符标记,它的索引都是从1开始连续计数。在 attribute_list可 以指定一个或多个集成员的属性,属性之间必须用逗号隔开 可以把集、集成员和集属性同C语言中的结构体作个类比。如下图: 集员性 结构体 结构体的域 结构体实例 LINGO内置的建模语言是一种描述性语言,用它可以描述现实世界中的一些问题,然后 再借助于 LINGO求解器求解。因此,集属性的值一旦在模型中被确定,就不可能再更改。在 LINGO中,只有在初始部分中给出的集属性值在以后的求解中可更改。这与前面并不矛盾 初始部分是 LINGO求解器的需要,并不是描述问题所必须的 2.3.2定义派生集 为了定义一个派生集,必须详细声明 ·集的名字 父集的名字 ·可选,集成员 可选,集成员的属性 可用下面的语法定义一个派生集: setname (parent set list)[/member list/[:attribute list] setname是集的名字。 parent set list是已定义的集的列表,多个时必须用逗号隔开 如果没有指定成员列表,那么 LINGO会自动创建父集成员的所有组合作为派生集的成员。派 生集的父集既可以是原始集,也可以是其它的派生集。 例2.3 product/A B/
6 setname/member1..memberN/[: attribute_list]; 这里的 member1 是集的第一个成员名,memberN 是集的最末一个成员名。LINGO 将自动产生 中间的所有成员名。LINGO 也接受一些特定的首成员名和末成员名,用于创建一些特殊的集。 列表如下: 隐式成员列表格式 示例 所产生集成员 1..n 1..5 1,2,3,4,5 StringM..StringN Car2..car14 Car2,Car3,Car4,…,Car14 DayM..DayN Mon..Fri Mon,Tue,Wed,Thu,Fri MonthM..MonthN Oct..Jan Oct,Nov,Dec,Jan MonthYearM..MonthYearN Oct2001..Jan2002 Oct2001,Nov2001,Dec2001,Jan2002 ③ 集成员不放在集定义中,而在随后的数据部分来定义。 例 2.2 !集部分; sets: students:sex,age; endsets !数据部分; data: students,sex,age= John 1 16 Jill 0 14 Rose 0 17 Mike 1 13; enddata 注意:开头用感叹号(!),末尾用分号(;)表示注释,可跨多行。 在集部分只定义了一个集 students,并未指定成员。在数据部分罗列了集成员 John、 Jill、Rose 和 Mike,并对属性 sex 和 age 分别给出了值。 集成员无论用何种字符标记,它的索引都是从 1 开始连续计数。在 attribute_ list 可 以指定一个或多个集成员的属性,属性之间必须用逗号隔开。 可以把集、集成员和集属性同 C 语言中的结构体作个类比。如下图: 集 ←→ 结构体 集成员 ←→ 结构体的域 集属性 ←→ 结构体实例 LINGO 内置的建模语言是一种描述性语言,用它可以描述现实世界中的一些问题,然后 再借助于 LINGO 求解器求解。因此,集属性的值一旦在模型中被确定,就不可能再更改。在 LINGO 中,只有在初始部分中给出的集属性值在以后的求解中可更改。这与前面并不矛盾, 初始部分是 LINGO 求解器的需要,并不是描述问题所必须的。 2.3.2 定义派生集 为了定义一个派生集,必须详细声明: ·集的名字 ·父集的名字 ·可选,集成员 ·可选,集成员的属性 可用下面的语法定义一个派生集: setname(parent_set_list)[/member_list/][:attribute_list]; setname 是集的名字。parent_set_list 是已定义的集的列表,多个时必须用逗号隔开。 如果没有指定成员列表,那么 LINGO 会自动创建父集成员的所有组合作为派生集的成员。派 生集的父集既可以是原始集,也可以是其它的派生集。 例 2.3 sets: product/A B/;
machine/M N/ week/1..2/ Flowed(product, machine, week):xi endsets LINGO生成了三个父集的所有组合共八组作为 allowed集的成员。列表如下 编号 成员 (A,M,1) (A,M,2) 2345678 234567 (A,N,1) (B,M,1) (B,M,2) (B,N,1) (B,N,2) 成员列表被忽略时,派生集成员由父集成员所有的组合构成,这样的派生集成为稠密集 如果限制派生集的成员,使它成为父集成员所有组合构成的集合的一个子集,这样的派生集 成为希疏集。同原始集一样,派生集成员的声明也可以放在数据部分。一个派生集的成员列 表有两种方式生成:①显式罗列:②设置成员资格过滤器。当采用方式①时,必须显式罗列 出所有要包含在派生集中的成员,并且罗列的每个成员必须属于稠密集。使用前面的例子, 显式罗列派生集的成员 allowed (product, machine, week)/A M 1, A N2, B N 1/ 如果需要生成一个大的、稀疏的集,那么显式罗列就很讨厌。幸运地是许多稀疏集的成员都 满足一些条件以和非成员相区分。我们可以把这些逻辑条件看作过滤器,在 LINGO生成派生 集的成员时把使逻辑条件为假的成员从稠密集中过滤掉。 例2.4 学生集:性别属性sex,1表示男性,0表示女性 属性age students/John, Jill, Rose, Mike/: sex, age; 男学生和女学生的联系集:友好程度属性 friend linkmf (students, students)Sex(&1)#eg 1 #and# sex(&2)#eq# 0: friend; 男学生和女学生的友好程度大于0.5的集 linkmf2(linkmf)I friend(&l,&2)#ge#0.5 116 014 013; friend=0.30.50.6; enddata 用竖线(|)来标记一个成员资格过滤器的开始。#eq#是逻辑运算符,用来判断是否“相 等”,可参考§4.&1可看作派生集的第1个原始父集的索引,它取遍该原始父集的所有成 员;82可看作派生集的第2个原始父集的索引,它取遍该原始父集的所有成员;&3,&4,…, 以此类推。注意如果派生集B的父集是另外的派生集A,那么上面所说的原始父集是集A向 前回溯到最终的原始集,其顺序保持不变,并且派生集A的过滤器对派生集B仍然有效。因 此,派生集的索引个数是最终原始父集的个数,索引的取值是从原始父集到当前派生集所作 限制的总和。 总的来说, LINGO可识别的集只有两种类型:原始集和派生集 在一个模型中,原始集是基本的对象,不能再被拆分成更小的组分。原始集可以由显式 罗列和隐式罗列两种方式来定义。当用显式罗列方式时,需在集成员列表中逐个输入每个成 员。当用隐式罗列方式时,只需在集成员列表中输入首成员和末成员,而中间的成员由 LINGO0 产生。 另一方面,派生集是由其它的集来创建。这些集被称为该派生集的父集(原始集或其它
7 machine/M N/; week/1..2/; allowed(product,machine,week):x; endsets LINGO 生成了三个父集的所有组合共八组作为 allowed 集的成员。列表如下: 编号 成员 1 (A,M,1) 2 2 (A,M,2) 3 3 (A,N,1) 4 4 (A,N,2) 5 5 (B,M,1) 6 6 (B,M,2) 7 7 (B,N,1) 8 8 (B,N,2) 成员列表被忽略时,派生集成员由父集成员所有的组合构成,这样的派生集成为稠密集。 如果限制派生集的成员,使它成为父集成员所有组合构成的集合的一个子集,这样的派生集 成为稀疏集。同原始集一样,派生集成员的声明也可以放在数据部分。一个派生集的成员列 表有两种方式生成:①显式罗列;②设置成员资格过滤器。当采用方式①时,必须显式罗列 出所有要包含在派生集中的成员,并且罗列的每个成员必须属于稠密集。使用前面的例子, 显式罗列派生集的成员: allowed(product,machine,week)/A M 1,A N 2,B N 1/; 如果需要生成一个大的、稀疏的集,那么显式罗列就很讨厌。幸运地是许多稀疏集的成员都 满足一些条件以和非成员相区分。我们可以把这些逻辑条件看作过滤器,在 LINGO 生成派生 集的成员时把使逻辑条件为假的成员从稠密集中过滤掉。 例 2.4 sets: !学生集:性别属性 sex,1 表示男性,0 表示女性;年龄属性 age. ; students/John,Jill,Rose,Mike/:sex,age; !男学生和女学生的联系集:友好程度属性 friend,[0,1]之间的数。 ; linkmf(students,students)|sex(&1) #eq# 1 #and# sex(&2) #eq# 0: friend; !男学生和女学生的友好程度大于 0.5 的集; linkmf2(linkmf) | friend(&1,&2) #ge# 0.5 : x; endsets data: sex,age = 1 16 0 14 0 17 0 13; friend = 0.3 0.5 0.6; enddata 用竖线(|)来标记一个成员资格过滤器的开始。#eq#是逻辑运算符,用来判断是否“相 等”,可参考§4. &1 可看作派生集的第 1 个原始父集的索引,它取遍该原始父集的所有成 员;&2 可看作派生集的第 2 个原始父集的索引,它取遍该原始父集的所有成员;&3,&4,……, 以此类推。注意如果派生集 B 的父集是另外的派生集 A,那么上面所说的原始父集是集 A 向 前回溯到最终的原始集,其顺序保持不变,并且派生集 A 的过滤器对派生集 B 仍然有效。因 此,派生集的索引个数是最终原始父集的个数,索引的取值是从原始父集到当前派生集所作 限制的总和。 总的来说,LINGO 可识别的集只有两种类型:原始集和派生集。 在一个模型中,原始集是基本的对象,不能再被拆分成更小的组分。原始集可以由显式 罗列和隐式罗列两种方式来定义。当用显式罗列方式时,需在集成员列表中逐个输入每个成 员。当用隐式罗列方式时,只需在集成员列表中输入首成员和末成员,而中间的成员由 LINGO 产生。 另一方面,派生集是由其它的集来创建。这些集被称为该派生集的父集(原始集或其它
的派生集)。一个派生集既可以是稀疏的,也可以是稠密的。稠密集包含了父集成员的所有 组合(有时也称为父集的笛卡尔乘积)。稀疏集仅包含了父集的笛卡尔乘积的一个子集,可 通过显式罗列和成员资格过滤器这两种方式来定义。显式罗列方法就是逐个罗列稀疏集的成 员。成员资格过滤器方法通过使用稀疏集成员必须满足的逻辑条件从稠密集成员中过滤出稀 疏集的成员。不同集类型的关系见下图。 集 派生集 原始集 稀疏集 稠密集 显式罗列 过滤器 LINGO集类型
8 的派生集)。一个派生集既可以是稀疏的,也可以是稠密的。稠密集包含了父集成员的所有 组合(有时也称为父集的笛卡尔乘积)。稀疏集仅包含了父集的笛卡尔乘积的一个子集,可 通过显式罗列和成员资格过滤器这两种方式来定义。显式罗列方法就是逐个罗列稀疏集的成 员。成员资格过滤器方法通过使用稀疏集成员必须满足的逻辑条件从稠密集成员中过滤出稀 疏集的成员。不同集类型的关系见下图。 集 稠密集 原始集 显式罗列 稀疏集 过滤器 派生集 LINGO 集类型
§3模型的数据部分和初始部分 在处理模型的数据时,需要为集指派一些成员并且在 LINGO求解模型之前为集的某些属 性指定值。为此, LINGO为用户提供了两个可选部分:输入集成员和数据的数据部分(Data Section)和为决策变量设置初始值的初始部分( Init section) 3.1模型的数据部分 3.1.1数据部分入门 数据部分提供了模型相对静止部分和数据分离的可能性。显然,这对模型的维护和维数 的缩放非常便利 数据部分以关键字“data:”开始,以关键字“ enddata”结束。在这里,可以指定集成 员、集的属性。其语法如下 object list value list 对象列( object list)包含要指定值的属性名、要设置集成员的集名,用逗号或空格 隔开。一个对象列中至多有一个集名,而属性名可以有任意多。如果对象列中有多个属性名 那么它们的类型必须一致。如果对象列中有一个集名,那么对象列中所有的属性的类型就是 这个集。 性值的个数必ist)包含要分配给对象列中的对象的值,用逗号或空格隔开。注意属 数值列( value 集成员的个数。看下面的例子。 例3.1 sets setl/A, B, C/:x,Y endsets i enddata 在集set1中定义了两个属性X和Y。X的三个值是1、2和3,Y的三个值是4、5和6 也可采用如下例子中的复合数据声明( data statement)实现同样的功能 例3.2 sets setl/A, B, C/:x,Y data X,Y=14 看到这个例子,可能会认为X被指定了1、4和2三个值,因为它们是数值列中前三个, 而正确的答案是1、2和3。假设对象列有n个对象,LING0在为对象指定值时,首先在n 个对象的第1个索引处依次分配数值列中的前n个对象,然后在n个对象的第2个索引处依 次分配数值列中紧接着的n个对象, 以此类推。 模型的所有数据—一属性值和集成员一一被单独放在数据部分,这可能是最规范的数据 输入方式 3.1.2参数 在数据部分也可以指定一些标量变量( scalar variables)。当一个标量变量在数据部 分确定时,称之为参数。看一例,假设模型中用利率8.5%作为一个参数,就可以象下面 样输入一个利率作为参数 例3.3 interest rate =.085 enddata 也可以同时指定多个参数。 例3.4 data
9 §3 模型的数据部分和初始部分 在处理模型的数据时,需要为集指派一些成员并且在 LINGO 求解模型之前为集的某些属 性指定值。为此,LINGO 为用户提供了两个可选部分:输入集成员和数据的数据部分(Data Section)和为决策变量设置初始值的初始部分(Init Section)。 3.1 模型的数据部分 3.1.1 数据部分入门 数据部分提供了模型相对静止部分和数据分离的可能性。显然,这对模型的维护和维数 的缩放非常便利。 数据部分以关键字“data:”开始,以关键字“enddata”结束。在这里,可以指定集成 员、集的属性。其语法如下: object_list = value_list; 对象列(object_list)包含要指定值的属性名、要设置集成员的集名,用逗号或空格 隔开。一个对象列中至多有一个集名,而属性名可以有任意多。如果对象列中有多个属性名, 那么它们的类型必须一致。如果对象列中有一个集名,那么对象列中所有的属性的类型就是 这个集。 数值列(value_list)包含要分配给对象列中的对象的值,用逗号或空格隔开。注意属 性值的个数必须等于集成员的个数。看下面的例子。 例 3.1 sets: set1/A,B,C/: X,Y; endsets data: X=1,2,3; Y=4,5,6; enddata 在集 set1 中定义了两个属性 X 和 Y。X 的三个值是 1、2 和 3,Y 的三个值是 4、5 和 6。 也可采用如下例子中的复合数据声明(data statement)实现同样的功能。 例 3.2 sets: set1/A,B,C/: X,Y; endsets data: X,Y=1 4 2 5 3 6; enddata 看到这个例子,可能会认为 X 被指定了 1、4 和 2 三个值,因为它们是数值列中前三个, 而正确的答案是 1、2 和 3。假设对象列有 n 个对象,LINGO 在为对象指定值时,首先在 n 个对象的第 1 个索引处依次分配数值列中的前 n 个对象,然后在 n 个对象的第 2 个索引处依 次分配数值列中紧接着的 n 个对象,……,以此类推。 模型的所有数据——属性值和集成员——被单独放在数据部分,这可能是最规范的数据 输入方式。 3.1.2 参数 在数据部分也可以指定一些标量变量(scalar variables)。当一个标量变量在数据部 分确定时,称之为参数。看一例,假设模型中用利率 8.5%作为一个参数,就可以象下面一 样输入一个利率作为参数。 例 3.3 data: interest_rate = .085; enddata 也可以同时指定多个参数。 例 3.4 data:
interest rate, inflation rate =.085.03 enddata 3.1.3实时数据处理 在某些情况,对于模型中的某些数据并不是定值。譬如模型中有一个通货膨胀率的参数, 我们想在%至6%范围内,对不同的值求解模型,来观察模型的结果对通货膨胀的依赖有多 么敏感。我们把这种情况称为实时数据处理( what if analysis)。LING0有一个特征可方 便地做到这件事 在本该放数的地方输入一个问号(?) 例3.5 data interest rate, inflation rate =085? enddata 每一次求解模型时, LINGO0都会提示为参数 inflation rate输入一个值。在 WINDOWS操作 系统下,将会接收到一个类似下面的对话框 LIRGO Runtime Input Please input a value for INFLATION RATE Cancel 直接输入一个值再点击郇K按钮, LINGO0就会把输入的值指定给 inflation rate,然后继续 求解模型 除了参数之外,也可以实时输入集的属性值,但不允许实时输入集成员名 3.1.4指定属性为一个值 可以在数据声明的右边输入一个值来把所有的成员的该属性指定为一个值。看下面的例 例3.6 days /Mo, TU, WE, TH, FR, SA, SU/: needs; endsets needs =20 LINGO将用20指定days集的所有成员的 needs属性。对于多个属性的情形,见下例 例3.7 days /MO, TU, WE, TH, FR, SA, SU/: needs, costi endsets needs cost =20 100 3.1.5数据部分的未知数值 有时只想为一个集的部分成员的某个属性指定值,而让其余成员的该属性保持未知,以 便让 LINGO去求出它们的最优值。在数据声明中输入两个相连的逗号表示该位置对应的集成 员的属性值未知。两个逗号间可以有空格 例3.8 t years/1.5/: capacity data capacity =,34, 20,,i enddata
10 interest_rate,inflation_rate = .085 .03; enddata 3.1.3 实时数据处理 在某些情况,对于模型中的某些数据并不是定值。譬如模型中有一个通货膨胀率的参数, 我们想在 2%至 6%范围内,对不同的值求解模型,来观察模型的结果对通货膨胀的依赖有多 么敏感。我们把这种情况称为实时数据处理(what if analysis)。LINGO 有一个特征可方 便地做到这件事。 在本该放数的地方输入一个问号(?)。 例 3.5 data: interest_rate,inflation_rate = .085 ?; enddata 每一次求解模型时,LINGO 都会提示为参数 inflation_rate 输入一个值。在 WINDOWS 操作 系统下,将会接收到一个类似下面的对话框: 直接输入一个值再点击 OK 按钮,LINGO 就会把输入的值指定给 inflation_rate,然后继续 求解模型。 除了参数之外,也可以实时输入集的属性值,但不允许实时输入集成员名。 3.1.4 指定属性为一个值 可以在数据声明的右边输入一个值来把所有的成员的该属性指定为一个值。看下面的例 子。 例 3.6 sets: days /MO,TU,WE,TH,FR,SA,SU/:needs; endsets data: needs = 20; enddata LINGO 将用 20 指定 days 集的所有成员的 needs 属性。对于多个属性的情形,见下例。 例 3.7 sets: days /MO,TU,WE,TH,FR,SA,SU/:needs,cost; endsets data: needs cost = 20 100; enddata 3.1.5 数据部分的未知数值 有时只想为一个集的部分成员的某个属性指定值,而让其余成员的该属性保持未知,以 便让 LINGO 去求出它们的最优值。在数据声明中输入两个相连的逗号表示该位置对应的集成 员的属性值未知。两个逗号间可以有空格。 例 3.8 sets: years/1..5/: capacity; endsets data: capacity = ,34,20,,; enddata