第10卷第6期 智能系统学报 Vol.10 No.6 2015年12月 CAAI Transactions on Intelligent Systems Dee.2015 D0:10.11992/is.201303032 基于EMD和模极大值的造影图像血管提取 邵欣,尹清波,鲁明羽 (大连海事大学信息科学技术学院,辽宁大连116026) 摘要:针对冠脉造影图像噪音大且血管边缘模糊问题,提出一种基于经验模态分解的冠脉造影图像血管提取方法 以较完整有效地提取出造影图像中的血管信息。该方法首先对图像预处理后的造影图像进行经验模态分解,将其 分解成若干图像层,保留包含血管信息的图像层并丢弃含非血管信息图像层:其次对保留的图像层进行血管特征提 取,依据连通区域的一系列属性来提取图像层中血管信息以获取清晰明显的血管段:最后通过层间信息相互参照, 重构血管脉络明显的心血管图像。实验证明了方法有很高的精确度和实际的医用价值。 关键词:血管提取:经验模态分解:冠脉造影图像:特征提取;连通区域;层间参照:血管重构:图像层 中图分类号:TP39文献标志码:A文章编号:1673-4785(2015)06-0851-07 中文引用格式:邵欣,尹清波,鲁明羽.基于EMD和模极大值的造影图像血管提取[J].智能系统学报,2015,10(6):851-857. 英文引用格式:SHAO Xin,YIN Qingbo,LU Mingyu.Vessels extraction in coronary angiogram based on empirical mode decompo- sition[J].CAAI Transactions on Intelligent Systems,2015,10(6):851-857. Vessels extraction in coronary angiogram based on empirical mode decomposition SHAO Xin,YIN Qingbo,LU Mingyu (College of Information Science and Technology,Dalian Maritime University,Dalian 116026,China) Abstract:In this paper,we present a new vascular characteristics extraction method based on empirical mode de- composition.The proposed method overcomes the problems of noise and the blurred vascular edge generally encoun- tered in the image processing procedure.This method uses empirical mode decomposition to resolve the coronary an- giogram into several image layers,retaining the layers that contain blood vessel information and discarding layers that contain only background information.Clear and distinct vessel segments are then extracted from the reserved image layers,based on the connected region's properties.Finally,the coronary angiogram is reconstructed accord- ing to the information extracted from the reserved layers.The experimental results prove that this method has high accuracy and practical medical value. Keywords:vessels extraction;empirical mode composition;coronary angiogram;characteristics extraction;con- nected region;interlayer reference;vascular remodeling;image layer 冠脉造影图像是临床诊断冠心病的“金标准”。 节的模糊,影响医生对病情的诊断。 其成像过程中,受心脏跳动、成像设备等因素影响, 近年来,不少学者致力于研究冠脉造影图像中 图像不可避免地会引入一些噪声,使得图像中的血 血管脉络特征的提取。常见的提取冠脉造影图像中 管脉络一定程度上模糊不清,尤其是血管边缘与细 的血管信息方法主要有数学形态学方法1]、匹配 滤波方法[46]、基于中心线的方法[]等。其中,数学 收稿日期:2013-03-20. 形态学方法是通过膨胀和腐蚀2种最主要的形态学 基金项目:国家自然科学基金资助项目(61175053,61272369):中央高 校基本科研业务费基金主项目(20110N126). 操作实现图像中目标的扩张或收缩,以先腐蚀后膨 通信作者:邵欣.E-mail:shaoxin2123@163.com. 胀的开操作和先膨胀后腐蚀的闭操作作为基础,实
第 10 卷第 6 期 智 能 系 统 学 报 Vol.10 №.6 2015 年 12 月 CAAI Transactions on Intelligent Systems Dec. 2015 DOI:10.11992 / tis.201303032 基于 EMD 和模极大值的造影图像血管提取 邵欣,尹清波,鲁明羽 (大连海事大学 信息科学技术学院,辽宁 大连 116026) 摘 要:针对冠脉造影图像噪音大且血管边缘模糊问题,提出一种基于经验模态分解的冠脉造影图像血管提取方法 以较完整有效地提取出造影图像中的血管信息。 该方法首先对图像预处理后的造影图像进行经验模态分解,将其 分解成若干图像层,保留包含血管信息的图像层并丢弃含非血管信息图像层;其次对保留的图像层进行血管特征提 取,依据连通区域的一系列属性来提取图像层中血管信息以获取清晰明显的血管段;最后通过层间信息相互参照, 重构血管脉络明显的心血管图像。 实验证明了方法有很高的精确度和实际的医用价值。 关键词:血管提取;经验模态分解;冠脉造影图像;特征提取;连通区域;层间参照;血管重构;图像层 中图分类号:TP39 文献标志码:A 文章编号:1673⁃4785(2015)06⁃0851⁃07 中文引用格式:邵欣,尹清波,鲁明羽. 基于 EMD 和模极大值的造影图像血管提取[J]. 智能系统学报, 2015, 10(6): 851⁃857. 英文引用格式:SHAO Xin, YIN Qingbo, LU Mingyu. Vessels extraction in coronary angiogram based on empirical mode decompo⁃ sition[J]. CAAI Transactions on Intelligent Systems, 2015, 10(6): 851⁃857. Vessels extraction in coronary angiogram based on empirical mode decomposition SHAO Xin, YIN Qingbo, LU Mingyu (College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China) Abstract:In this paper, we present a new vascular characteristics extraction method based on empirical mode de⁃ composition. The proposed method overcomes the problems of noise and the blurred vascular edge generally encoun⁃ tered in the image processing procedure. This method uses empirical mode decomposition to resolve the coronary an⁃ giogram into several image layers, retaining the layers that contain blood vessel information and discarding layers that contain only background information. Clear and distinct vessel segments are then extracted from the reserved image layers, based on the connected region's properties. Finally, the coronary angiogram is reconstructed accord⁃ ing to the information extracted from the reserved layers. The experimental results prove that this method has high accuracy and practical medical value. Keywords: vessels extraction; empirical mode composition; coronary angiogram; characteristics extraction; con⁃ nected region; interlayer reference; vascular remodeling; image layer 收稿日期:2013⁃03⁃20. 基金项目:国家自然科学基金资助项目( 61175053, 61272369);中央高 校基本科研业务费基金主项目(2011QN 126). 通信作者:邵欣.E⁃mail: shaoxin2123@ 163.com. 冠脉造影图像是临床诊断冠心病的“金标准”。 其成像过程中,受心脏跳动、成像设备等因素影响, 图像不可避免地会引入一些噪声,使得图像中的血 管脉络一定程度上模糊不清,尤其是血管边缘与细 节的模糊,影响医生对病情的诊断。 近年来,不少学者致力于研究冠脉造影图像中 血管脉络特征的提取。 常见的提取冠脉造影图像中 的血管信息方法主要有数学形态学方法[1⁃3] 、匹配 滤波方法[4⁃6] 、基于中心线的方法[7] 等。 其中,数学 形态学方法是通过膨胀和腐蚀 2 种最主要的形态学 操作实现图像中目标的扩张或收缩,以先腐蚀后膨 胀的开操作和先膨胀后腐蚀的闭操作作为基础,实
.852. 智能系统学报 第10卷 现图像中的边缘检测、图像增强和特征提取等相关 素填充,填充的过程如下: 操作:匹配滤波方法是将多个线性滤波器与卷积运 1)将图1的冠脉造影图像划分为如图2所示的4 算相结合的方式提取图像中的目标信息,通常还需 个区域,箭头表示该区的像素填充方向。每个区域的 要其他相关图像处理操作才能得到图像中的血管信 填充方向各不相同,依次为左上、右上、左下和右下。 息:基于中心线方法的基本思想是提取出图像中整 A 个血管树的中心线,然后通过测量血管在某位置的 半径重构图像中的血管脉络。但由于血管的形状复 杂,血管的直径和造影剂的密度也会发生变化等,使 得现有的方法并不能有效且完整地将冠脉造影图像 中的血管信息提取出来。 经验模态分解是一种新的非平稳信号分析处理 图1冠脉造影图像 方法,可用于冠状动脉造影图像的图像处理过 Fig.1 Coronary angiography images 程[s]。本文提出一种基于经验模态分解的血管特 征提取方法:采用经验模态分解将造影图像分解成 若干图像层,形成图像层组,该组中有的图像层包含 了大量有效的血管信息而有的则包含的是肋骨、肺 或其他组织等形成的非血管信息,丢弃含非血管信 息的图像层,对含有血管信息的图像层进行血管特 征提取,依据连通区域一系列属性提取出图像层中 3 清晰明显的血管段,将各图像层提取出的血管信息 图2冠脉造影图像分区 相互参照并重构血管脉络明显的心血管图像。此 Fig.2 Partition of angiography images 外,本方法对冠脉造影图像经验模态分解之前须进 2)定义像素填充模板。本文是在待处理像素 行图像预处理操作,这是因为经验模态分解方法的 点的邻近位置选取大小合适的矩形填充模板,由此 基本原理是根据目标的变化频率而将图像中信息逐 模板计算得出待填充点的像素值。例如,对填充方 层分离出来,但受现有投影设备的限制,在冠脉造影 向为左上方的1区来说,采取的操作是在待填充点 图像的四周存在从有像素区到黑色无像素区的过渡 的右下方取一个大小为m×n的矩阵。根据式(1) 区域,该区域的频率变化最大,如果不进行图像预处 计算该矩阵的平均灰度值,将该值作为待填充点的 理进行图像像素填充使该区域实现平滑过渡,会在 灰度值。如图3所示,P是待填充点,本文中取m= 经验模态分解结果中出现严重边缘效应。 4,n=4。 1 冠脉造影图像预处理 在对冠脉造影图像进行特征提取之前,须对图 像中无像素黑色区域进行像素填充,使该区域像素 点的灰度值实现平滑过渡,以抑制此后经验模态分 解过程中边缘效应的出现。 受投影设备的限制,冠脉造影图像的四周会出 图34×4大小的矩阵模块 现黑色区域,该区域不包含任何血管信息且频率变 Fig.3 Partition's 4x4 matrix module 化最大,由于经验模态分解是根据目标的变化频率 而将图像中信息逐层分离出来,如果不对此区域进 Pwn((Pw) (1) 行像素填充则会在分解结果中出现严重边缘效应。 m×nk1=1k2=1 图1所示的是临床常见的冠脉造影图像。观察图像 式中:P-表示点(i-kj-2)的灰度值。 可知在黑色区域与圆形亮色区域的相接处,像素点 据此对图像1区由下至上、从右到左扫描,以填充黑 的灰度值变化最为剧烈,在图像经验模态分解过程 色区域中的所有待填充,点。对其他待填充区域进行 中此处会出现伪血管信息。 类似处理,唯一不同的是矩阵模块与待填充点的邻 为此,本文对图像中无像素的黑色区域进行像 接方向发生了变化
现图像中的边缘检测、图像增强和特征提取等相关 操作;匹配滤波方法是将多个线性滤波器与卷积运 算相结合的方式提取图像中的目标信息,通常还需 要其他相关图像处理操作才能得到图像中的血管信 息;基于中心线方法的基本思想是提取出图像中整 个血管树的中心线,然后通过测量血管在某位置的 半径重构图像中的血管脉络。 但由于血管的形状复 杂,血管的直径和造影剂的密度也会发生变化等,使 得现有的方法并不能有效且完整地将冠脉造影图像 中的血管信息提取出来。 经验模态分解是一种新的非平稳信号分析处理 方法,可 用 于 冠 状 动 脉 造 影 图 像 的 图 像 处 理 过 程[8⁃10] 。 本文提出一种基于经验模态分解的血管特 征提取方法:采用经验模态分解将造影图像分解成 若干图像层,形成图像层组,该组中有的图像层包含 了大量有效的血管信息而有的则包含的是肋骨、肺 或其他组织等形成的非血管信息,丢弃含非血管信 息的图像层,对含有血管信息的图像层进行血管特 征提取,依据连通区域一系列属性提取出图像层中 清晰明显的血管段,将各图像层提取出的血管信息 相互参照并重构血管脉络明显的心血管图像。 此 外,本方法对冠脉造影图像经验模态分解之前须进 行图像预处理操作,这是因为经验模态分解方法的 基本原理是根据目标的变化频率而将图像中信息逐 层分离出来,但受现有投影设备的限制,在冠脉造影 图像的四周存在从有像素区到黑色无像素区的过渡 区域,该区域的频率变化最大,如果不进行图像预处 理进行图像像素填充使该区域实现平滑过渡,会在 经验模态分解结果中出现严重边缘效应。 1 冠脉造影图像预处理 在对冠脉造影图像进行特征提取之前,须对图 像中无像素黑色区域进行像素填充,使该区域像素 点的灰度值实现平滑过渡,以抑制此后经验模态分 解过程中边缘效应的出现。 受投影设备的限制,冠脉造影图像的四周会出 现黑色区域,该区域不包含任何血管信息且频率变 化最大,由于经验模态分解是根据目标的变化频率 而将图像中信息逐层分离出来,如果不对此区域进 行像素填充则会在分解结果中出现严重边缘效应。 图 1 所示的是临床常见的冠脉造影图像。 观察图像 可知在黑色区域与圆形亮色区域的相接处,像素点 的灰度值变化最为剧烈,在图像经验模态分解过程 中此处会出现伪血管信息。 为此,本文对图像中无像素的黑色区域进行像 素填充,填充的过程如下: 1)将图 1 的冠脉造影图像划分为如图 2 所示的 4 个区域,箭头表示该区的像素填充方向。 每个区域的 填充方向各不相同,依次为左上、右上、左下和右下。 图 1 冠脉造影图像 Fig.1 Coronary angiography images 图 2 冠脉造影图像分区 Fig.2 Partition of angiography images 2)定义像素填充模板。 本文是在待处理像素 点的邻近位置选取大小合适的矩形填充模板,由此 模板计算得出待填充点的像素值。 例如,对填充方 向为左上方的 1 区来说,采取的操作是在待填充点 的右下方取一个大小为 m × n 的矩阵。 根据式(1) 计算该矩阵的平均灰度值,将该值作为待填充点的 灰度值。 如图 3 所示, P 是待填充点,本文中取 m = 4,n = 4。 图 3 4×4 大小的矩阵模块 Fig.3 Partition’s 4×4 matrix module P(i,j) = 1 m × n∑ m k1 = 1 (∑ n k2 = 1 (P(i-k1 ,j-k2 ) )) (1) 式中: P(i-k1 ,j-k2 ) 表示点 (i - k1 ,j - k2 ) 的灰度值。 据此对图像 1 区由下至上、从右到左扫描,以填充黑 色区域中的所有待填充点。 对其他待填充区域进行 类似处理,唯一不同的是矩阵模块与待填充点的邻 接方向发生了变化。 ·852· 智 能 系 统 学 报 第 10 卷
第6期 邵欣,等:基于EMD和模极大值的造影图像血管提取 ·853. 3)设定阈值并通过阈值T将待填充区域内的 所有点分类成待填充点和保留点。如果一个像素点 的灰度级小于阈值T则使用填充模板进行灰度级填 充,如果大于阈值T则保留该像素点的原灰度级,不 做灰度级填充处理。阈值T的设定方法是:对于选 定的图像填充区域,首先统计该区域内每个灰度级 像素的出现概率,即得到该区域的灰度直方图,然后 图5心血管的空间结构 概率小于某一数值的所有灰度级中的最大值作为阈 Fig.5 Spatial structure of the cardiovascular 值。本文实验中概率取1.16×102,约为0.0116。 09 4)依据图像填充模对图像①区由下至上、从右 到左扫描,以填充黑色区域中的所有待填充点。对 其他待填充区域进行类似处理,唯一不同的是矩阵 模块与待填充点的邻接方向发生了变化。 5)图像二次填充以去除毛刺。经过4)对冠脉 造影图像进行初次扫描及像素填充之后,部分像素 点的过渡处仍存在小的毛刺,为了更好地实现图像 ×10 像素平滑过渡的效果,重复4)对图像进行二次扫描 填充。冠脉造影图像经像素填充预处理后的图像如 (a)imf 图4所示。下文中提到的冠脉造影图像均指预处理 后的图像。 *10 (b)imf, 102 01 图4预处理后图像 Fig.4 The result of image preprocessing 2造影图像经验模态分解 本文采用经验模态分解方法将造影图像分解成 若干图像层,利用了血管以下特性:在三维空间中为 管状结构,经X光照射后形成冠脉造影图像中的血 2x3 4 3*10 管段,其在血流方向上灰度级变化缓慢,而在垂直于 (c)imf 血管血流方向上灰度级变化剧烈。如图5所示,图 像灰度级在入,方向上变化较平缓,在入,方向上变 化剧烈。 以图4为实验对象,图像通过经验模态分解后 的结果是原图像被分解成不同的图像层,每一层中 包含图像中不同变化频率血管特征信息,图像分解 结果如图6所示。通过对照原冠脉造影图像与图像 分解后的图像层组发现,图像中的血管信息主要分 *10 布在imf、imf2和imf中。因此,在对各分解层信号 的后续处理过程中,本文只针对前3层进行处理。 (d)imf
3)设定阈值并通过阈值 T 将待填充区域内的 所有点分类成待填充点和保留点。 如果一个像素点 的灰度级小于阈值 T 则使用填充模板进行灰度级填 充,如果大于阈值 T 则保留该像素点的原灰度级,不 做灰度级填充处理。 阈值 T 的设定方法是:对于选 定的图像填充区域,首先统计该区域内每个灰度级 像素的出现概率,即得到该区域的灰度直方图,然后 概率小于某一数值的所有灰度级中的最大值作为阈 值。 本文实验中概率取 1.16×10 -2 ,约为 0.011 6。 4)依据图像填充模对图像①区由下至上、从右 到左扫描,以填充黑色区域中的所有待填充点。 对 其他待填充区域进行类似处理,唯一不同的是矩阵 模块与待填充点的邻接方向发生了变化。 5)图像二次填充以去除毛刺。 经过 4)对冠脉 造影图像进行初次扫描及像素填充之后,部分像素 点的过渡处仍存在小的毛刺,为了更好地实现图像 像素平滑过渡的效果,重复 4)对图像进行二次扫描 填充。 冠脉造影图像经像素填充预处理后的图像如 图 4 所示。 下文中提到的冠脉造影图像均指预处理 后的图像。 图 4 预处理后图像 Fig.4 The result of image preprocessing 2 造影图像经验模态分解 本文采用经验模态分解方法将造影图像分解成 若干图像层,利用了血管以下特性:在三维空间中为 管状结构,经 X 光照射后形成冠脉造影图像中的血 管段,其在血流方向上灰度级变化缓慢,而在垂直于 血管血流方向上灰度级变化剧烈。 如图 5 所示,图 像灰度级在 λ1 方向上变化较平缓,在 λ2 方向上变 化剧烈。 以图 4 为实验对象,图像通过经验模态分解后 的结果是原图像被分解成不同的图像层,每一层中 包含图像中不同变化频率血管特征信息,图像分解 结果如图 6 所示。 通过对照原冠脉造影图像与图像 分解后的图像层组发现,图像中的血管信息主要分 布在 imf 1 、 imf 2 和 imf 3 中。 因此,在对各分解层信号 的后续处理过程中,本文只针对前 3 层进行处理。 图 5 心血管的空间结构 Fig.5 Spatial structure of the cardiovascular (a) imf 1 (b) imf 2 (c) imf 3 (d) imf 4 第 6 期 邵欣,等:基于 EMD 和模极大值的造影图像血管提取 ·853·
.854 智能系统学报 第10卷 0 10 10 2 ×10 5 (e)imfs (b)imf,极大值 010 10 ×10 ×10 2 (c)imfz (f)imf 10 图6图像EMD分解 Fig.6 Image EMD decomposition 3图像层中血管特征提取 针对冠脉造影图像强背景噪音的特点,经验模 态分解虽然能很好地将造影图像中的血管信息和背 景信息分离出来,并能将图像中的血管根据变化频 A 了*10 率的不同进行分级,生成含有不用尺度级血管的图 (d)imf2极大值 像层组,但是经验模态分解算法在分解图像产生若 干个图像层的过程中某些情况下可能发生模态混叠 现象。此现象会造成图像层中的血管特征信息失 真,使得图像层中的信息不能真实反映冠脉造影图 像中血管脉络信息,所以采用小波变换模极大值方 法实现图像层间的信息参照以消除模态混叠造成的 信息失真现象。 10 对冠脉造影图像分解后的图像层进行层间信息 参照,主要是imf,、imf,和imf之间信息的参照。以 (e)imf3 图6中图像为例,得到如图7所示的极大值序列。 10 ×102 3 4×10 ×10 (f)imf,极大值 (a)imf 图7各图像层中的极大值 Fig.7 The maxima of each image layer
(e) imf 5 (f) imf 6 图 6 图像 EMD 分解 Fig.6 Image EMD decomposition 3 图像层中血管特征提取 针对冠脉造影图像强背景噪音的特点,经验模 态分解虽然能很好地将造影图像中的血管信息和背 景信息分离出来,并能将图像中的血管根据变化频 率的不同进行分级,生成含有不用尺度级血管的图 像层组,但是经验模态分解算法在分解图像产生若 干个图像层的过程中某些情况下可能发生模态混叠 现象。 此现象会造成图像层中的血管特征信息失 真,使得图像层中的信息不能真实反映冠脉造影图 像中血管脉络信息,所以采用小波变换模极大值方 法实现图像层间的信息参照以消除模态混叠造成的 信息失真现象。 对冠脉造影图像分解后的图像层进行层间信息 参照,主要是 imf 1 、 imf 2 和 imf 3 之间信息的参照。 以 图 6 中图像为例,得到如图 7 所示的极大值序列。 (a) imf 1 (b) imf 1 极大值 (c) imf 2 (d) imf 2 极大值 (e) imf 3 (f) imf 3 极大值 图 7 各图像层中的极大值 Fig.7 The maxima of each image layer ·854· 智 能 系 统 学 报 第 10 卷
第6期 邵欣,等:基于EMD和模极大值的造影图像血管提取 ·855- 针对imf,中的极大值点,如果在图像层imf,相 值,求得平均包络线mk-(t); 同图像位置上,该图像位置周围一定的区域范围内 10) 定义h(t)=hg-1(t)-mk-(t): 检测到极大值点,则imf,中的此类点属于血管特征 11) k=k+1:} 信息,将该类点标记并生成标记点集合Mark1。同 12) while h,(t)不满足本征模态函数IF的 样的参照方法对im[,图像层中的极大值进行标记, 标准; 以imf,图像层中的极大值点为参照信息,对Mark= 13) IMF:(t)=h(t);/生成本征模态函数 Mark,UMark2中的极大值点,如果在图像层imf,相 14) ri(t)=ri-(t)-IMF;(t); 同图像位置上,周围一定的区域范围内检测到极大 15)i=i+1;} 值点,则imf,中的此类点为标记点,生成的标记点 16)分解完成,生成imf图像层组合残差图像: 结果标记点集合Mark,中。由此可知,造影图像血 17)图像层组分成包含血管信息的有效层和包 管信息层间的信息参照结果是一个标记点集合 含背景信息的无效层: imf,其中Mark=Mark,UMark2。在图像重构过程 18)有效图像层进行极大值检测,层间信息相 中标记点集合即为结果图像中血管树生成过程的参 互参照,生成标记点集合; 照信息,包含标记点的连通区域即为血管脉络树中 19)依据Mark集合重构血管脉络树: 的特征信息,否则该连通区域属于背景信息,做丢弃 20)生成结果图像,血管信息提取过程完成。 处理。采用类似小波变换的模极大值思想,对imf 依据标记,点集合对冠脉造影图像进行重构,将 图像层进行层间极大值参照处理,结果得到一个标 各个有效图像层中的血管信息进行综合,生成结果 记点集合Mark{m,(x,y)1i=1,2,…,k,1≤x≤M 图像。图8给出图像重构过程中不参照Mark集合 andI≤y≤N}。依据标记点集合进行图像血管脉 和参照Mark集合的结果图像效果对比。在图8(a) 络重构。 中,结果图像是直接将经验模态分解后的有效图像 4图像重构 层中提取出的血管信息直接相加得到,图8(b)中的 结果图像则在图像重构过程中,参照标记点集合,将 依据小波变换模极大值的思想对各图像层间的 包含标记点的连通区域保留在结果图像中,不包含 血管信息进行层间参照,得到标记点集合。在对各 标记点的连通区域看做噪音处理。对比发现,通过 层图像进行信息重构以实现血管脉络树重构时,参 模极大值进行图层间的信息相互参照,生成的标记 照标记点集合,实现各层信息的信息综合,从而得到 点集合能很好地实现图像血管脉络树的重构并有效 最终的血管树,获取冠脉造影图像中的完整血管信 抑制噪音。 息。算法1详细描述了本文中冠脉造影图像中的完 整血管信息的提取过程。 算法1基于EMD和模极大值的血管提取算 法输入:插值预处理后图像: 输出:含有血管脉络树的结果图像。 1)插值预处理后图像进行条件初始化:。(t)= x(t),i=1; 2)whiler:(t)≥2/r:(t)是x(t)的“残余量"” (a)不参照Mark (b)参照Mark 3)do{/提取第i个本征模态函数; 图8结果对比 Fig.8 Result contrast 4)条件进一步初始化:h(t)=r,(t),k=1: 5) do 5 实验结果分析 6) 计算h-(t)的局部极大值与局部 极小值: 为了更好地说明本文提出的算法能有效提取冠 7) 利用三次样条对局部极大值与局 脉造影图像中的血管信息,将本文算法的血管提取 部极小值序列进行插值: 结果与现有常用的Hessian矩阵、Gabor滤波器、直 8) 分别形成h4-1(t)的上包络线和下 方图均衡化(HE)、线性反锐化掩模(LUM)等算法 包络线: 结果作比较。 9) 计算h-1(t)的上、下包络线的均 图9给出了Hessian矩阵、Gabor滤波器、直方
针对 imf 3 中的极大值点,如果在图像层 imf 2 相 同图像位置上,该图像位置周围一定的区域范围内 检测到极大值点,则 imf 3 中的此类点属于血管特征 信息,将该类点标记并生成标记点集合 Mark1 。 同 样的参照方法对 imf 2 图像层中的极大值进行标记, 以 imf 1 图像层中的极大值点为参照信息,对 Mark = Mark1∪Mark2中的极大值点,如果在图像层 imf 1 相 同图像位置上,周围一定的区域范围内检测到极大 值点,则 imf 2 中的此类点为标记点,生成的标记点 结果标记点集合 Mark2 中。 由此可知,造影图像血 管信息层间的信息参照结果是一个标记点集合 imf 1 ,其中 Mark = Mark1 ∪Mark2 。 在图像重构过程 中标记点集合即为结果图像中血管树生成过程的参 照信息,包含标记点的连通区域即为血管脉络树中 的特征信息,否则该连通区域属于背景信息,做丢弃 处理。 采用类似小波变换的模极大值思想,对 imf 图像层进行层间极大值参照处理,结果得到一个标 记点集合 Mark {mi(x,y) | i = 1,2,…,k,1 ≤ x ≤ M and 1 ≤y ≤N} 。 依据标记点集合进行图像血管脉 络重构。 4 图像重构 依据小波变换模极大值的思想对各图像层间的 血管信息进行层间参照,得到标记点集合。 在对各 层图像进行信息重构以实现血管脉络树重构时,参 照标记点集合,实现各层信息的信息综合,从而得到 最终的血管树,获取冠脉造影图像中的完整血管信 息。 算法 1 详细描述了本文中冠脉造影图像中的完 整血管信息的提取过程。 算法 1 基于 EMD 和模极大值的血管提取算 法输入:插值预处理后图像; 输出:含有血管脉络树的结果图像。 1)插值预处理后图像进行条件初始化: r0(t) = x(t),i = 1; 2)whileri(t) ≥ 2 / / ri(t) 是 x(t) 的“残余量” 3)do { / / 提取第 i 个本征模态函数; 4) 条件进一步初始化: h0(t) = ri(t),k = 1; 5 ) do{ 6) 计算 hk-1(t) 的局部极大值与局部 极小值; 7) 利用三次样条对局部极大值与局 部极小值序列进行插值; 8) 分别形成 hk-1(t) 的上包络线和下 包络线; 9) 计算 hk-1(t) 的上、下包络线的均 值,求得平均包络线 mk-1(t) ; 10 ) 定义 hk(t) = hk-1(t) - mk-1(t) ; 11) k = k + 1;} 12 ) while hk(t) 不满足本征模态函数 IMF 的 标准; 13 ) IMFi(t) = hk(t) ; / / 生成本征模态函数 14) ri(t) = ri-1(t) - IMFi(t); 15 ) i = i + 1;} 16) 分解完成,生成 imf 图像层组合残差图像; 17)图像层组分成包含血管信息的有效层和包 含背景信息的无效层; 18)有效图像层进行极大值检测,层间信息相 互参照,生成标记点集合; 19)依据 Mark 集合重构血管脉络树; 20)生成结果图像,血管信息提取过程完成。 依据标记点集合对冠脉造影图像进行重构,将 各个有效图像层中的血管信息进行综合,生成结果 图像。 图 8 给出图像重构过程中不参照 Mark 集合 和参照 Mark 集合的结果图像效果对比。 在图 8(a) 中,结果图像是直接将经验模态分解后的有效图像 层中提取出的血管信息直接相加得到,图 8(b)中的 结果图像则在图像重构过程中,参照标记点集合,将 包含标记点的连通区域保留在结果图像中,不包含 标记点的连通区域看做噪音处理。 对比发现,通过 模极大值进行图层间的信息相互参照,生成的标记 点集合能很好地实现图像血管脉络树的重构并有效 抑制噪音。 图 8 结果对比 Fig.8 Result contrast 5 实验结果分析 为了更好地说明本文提出的算法能有效提取冠 脉造影图像中的血管信息,将本文算法的血管提取 结果与现有常用的 Hessian 矩阵、Gabor 滤波器、直 方图均衡化(HE)、线性反锐化掩模( LUM) 等算法 结果作比较。 图 9 给出了 Hessian 矩阵、Gabor 滤波器、直方 第 6 期 邵欣,等:基于 EMD 和模极大值的造影图像血管提取 ·855·
·856 智能系统学报 第10卷 图均衡化(HE)、线性反锐化掩模(LUM)和本文提 将图像中的边缘区域对比度过度增强,产生伪影现 出的基于ED和模极大值的血管提取算法的实验 象。图9()给出了本文算法对造影图像的血管提 结果对比。 取结果。 6结束语 针对冠脉造影图像噪音大和血管边缘模糊等问 题,提出的基于经验模态分解的血管特征提取方法, 是将造影图像分解成若干图像层,形成图像层组,对 图像层进行血管提取,将各层中有效的血管信息汇 总在结果图像中,得到血管脉络完整的心血管图像。 (a)原图像 (b)Hessian矩阵 对比其他算法的实验结果,文中算法得到的结 果图像有极好的视觉效果,去除了造影图像中强背 景噪音,使得图像更便于血管信息的直观分析和观 察,同时提取出的血管树结构有很好的连续性和完 整性,造影图像中血管特征信息,如血管方向、狭窄 程序和血管分叉点都有很高的精确度,算法具有很 好的实际医用价值。 (c)Gabori滤波器 (d)HE 参考文献: [1]ZHOU Shoujun,YANG Jian,WANG Yongtian,et al.Auto- matic segmentation of coronary angiograms based on fuzzy inferring and probabilistic tracking[J].Biomedical Engi- neering Online,2010,9:40. [2]YANG Guanyu,KITSLAAR P,FRENAY M,et al.Auto- matic centerline extraction of coronary arteries in coronary (e)LUM (OEMDMM computed tomographic angiography [J].The International 图9算法对比 Joumal of Cardiovascular Imaging,2011,28(4):921-933. Fig.9 Algorithm effect contrast [3]MARIN D,AQUINO A,GEGUNDEZ-ARIAS M E.et al.A new supervised method for blood vessel segmentation in reti- 以冠脉造影图像为例进行血管信息提取结果对 nal images by using gray-level and moment invariants-based 比,图9(b)给出了Hessian矩阵对造影图像的血管 features[J].IEEE Transactions on Medical Imaging,2011, 提取结果,该方法能将血管与背景对比度非常强的 30(1):146-158. 区域中的血管段提取出来,有很好的血管连续性,但 [4]Van Der ZWET P M J,NETTESHEIM M.GERBRANDS J 是不足的是对于血管与背景对比度稍微较弱的区域 J,et al.Derivation of optimal filters for the detection of cor- 则无能为力,能提取出的血管信息非常有限,提取效 onary arteries[J].IEEE Transactions on Medical Imaging, 果不太理想。图9(c)中给出了Gabor滤波器对造 1998,17(1):108-120. 影图像中的血管信息进行过滤提取,能够将血管脉 [5]WANG Li,BHALERAO A,WILSON R.Analysis of retinal 络的轮廓提取出来,但是得到的结果图像中血管特 vasculature using a multiresolution Hermite model[].IEEE 征并没有很好地凸显出来,血管树的连续性也较差。 Transactions on Medical Imaging,2007,26(2):137-152. 图9()给出了造影图像直方图均衡化后得到的结 [6]RANGAYYAN R M,AYRES F J,OLOUMI F,et al.De- tection of blood vessels in the retina with multiscale Gabor 果图像,该图像在一定程度上提高了冠脉造影图像 的图像效果,但是对于背景噪音强、图像对比度低的 filters[J].Journal of Electronic Imaging,2008,17(2): 023018. 图像区域还是存在背景噪音过强的缺点,整体来说 [7]GREENSPAN H,LAIFENFELD M,EINAV S,et al.Eval- 还是能够将血管脉络结构较好地表达出来。图9 uation of center-line extraction algorithms in quantitative (e)给出了线性反锐化掩模对造影图像的处理结 coronary angiography[J].IEEE Transactions on Medical 果,该方法能够实现造影图像中血管的细节和边缘 Imaging,2001,20(9):928-941. 突出表达,但是分段函数产生的量化误差较大时会 [8]康文炜.冠状动脉造影图像的分割方法研究[D].长春:
图均衡化(HE)、线性反锐化掩模( LUM) 和本文提 出的基于 EMD 和模极大值的血管提取算法的实验 结果对比。 图 9 算法对比 Fig.9 Algorithm effect contrast 以冠脉造影图像为例进行血管信息提取结果对 比,图 9(b)给出了 Hessian 矩阵对造影图像的血管 提取结果,该方法能将血管与背景对比度非常强的 区域中的血管段提取出来,有很好的血管连续性,但 是不足的是对于血管与背景对比度稍微较弱的区域 则无能为力,能提取出的血管信息非常有限,提取效 果不太理想。 图 9( c)中给出了 Gabor 滤波器对造 影图像中的血管信息进行过滤提取,能够将血管脉 络的轮廓提取出来,但是得到的结果图像中血管特 征并没有很好地凸显出来,血管树的连续性也较差。 图 9(d)给出了造影图像直方图均衡化后得到的结 果图像,该图像在一定程度上提高了冠脉造影图像 的图像效果,但是对于背景噪音强、图像对比度低的 图像区域还是存在背景噪音过强的缺点,整体来说 还是能够将血管脉络结构较好地表达出来。 图 9 (e)给出了线性反锐化掩模对造影图像的处理结 果,该方法能够实现造影图像中血管的细节和边缘 突出表达,但是分段函数产生的量化误差较大时会 将图像中的边缘区域对比度过度增强,产生伪影现 象。 图 9(f)给出了本文算法对造影图像的血管提 取结果。 6 结束语 针对冠脉造影图像噪音大和血管边缘模糊等问 题,提出的基于经验模态分解的血管特征提取方法, 是将造影图像分解成若干图像层,形成图像层组,对 图像层进行血管提取,将各层中有效的血管信息汇 总在结果图像中,得到血管脉络完整的心血管图像。 对比其他算法的实验结果,文中算法得到的结 果图像有极好的视觉效果,去除了造影图像中强背 景噪音,使得图像更便于血管信息的直观分析和观 察,同时提取出的血管树结构有很好的连续性和完 整性,造影图像中血管特征信息,如血管方向、狭窄 程序和血管分叉点都有很高的精确度,算法具有很 好的实际医用价值。 参考文献: [1]ZHOU Shoujun, YANG Jian, WANG Yongtian, et al. Auto⁃ matic segmentation of coronary angiograms based on fuzzy inferring and probabilistic tracking [ J]. Biomedical Engi⁃ neering Online, 2010, 9: 40. [2] YANG Guanyu, KITSLAAR P, FRENAY M, et al. Auto⁃ matic centerline extraction of coronary arteries in coronary computed tomographic angiography [ J]. The International Journal of Cardiovascular Imaging, 2011, 28(4): 921⁃933. [3]MARIN D, AQUINO A, GEGUNDEZ⁃ARIAS M E, et al. A new supervised method for blood vessel segmentation in reti⁃ nal images by using gray⁃level and moment invariants⁃based features[J]. IEEE Transactions on Medical Imaging, 2011, 30(1): 146⁃158. [4]Van Der ZWET P M J, NETTESHEIM M, GERBRANDS J J, et al. Derivation of optimal filters for the detection of cor⁃ onary arteries[ J]. IEEE Transactions on Medical Imaging, 1998, 17(1): 108⁃120. [5]WANG Li, BHALERAO A, WILSON R. Analysis of retinal vasculature using a multiresolution Hermite model[J]. IEEE Transactions on Medical Imaging, 2007, 26(2): 137⁃152. [6]RANGAYYAN R M, AYRES F J, OLOUMI F, et al. De⁃ tection of blood vessels in the retina with multiscale Gabor filters[ J]. Journal of Electronic Imaging, 2008, 17 ( 2): 023018. [7]GREENSPAN H, LAIFENFELD M, EINAV S, et al. Eval⁃ uation of center⁃line extraction algorithms in quantitative coronary angiography [ J ]. IEEE Transactions on Medical Imaging, 2001, 20(9): 928⁃941. [8]康文炜. 冠状动脉造影图像的分割方法研究[D]. 长春: ·856· 智 能 系 统 学 报 第 10 卷
第6期 邵欣,等:基于EMD和模极大值的造影图像血管提取 .857. 吉林大学,2010. [12]钟佑明,赵强,周建庭.实时经验模态分解的实现方法 KANG Wenwei.The segmentation methods of coronary an- [J].振动、测试与诊断,2012,32(1):68-72. giogram images[D].Changchun,China:Jilin University, ZHONG Youming,ZHAO Qiang,ZHOU Jianting.Appli- 2010. cation of residual-based cumulative sum control charts for [9]周寿军,杨俊,陈武凡,等.一种从X射线血管造影图 detecting faults in autocorrelated processes[].Journal of 像中自动分割冠状动脉的新方法[J].中国科学E辑: Vibration,Measurement Diagnosis,2012,32(1):68- 信息科学,2007,37(12):1531-1543. 72. ZHOU Shoujun,YANG Jun,CHEN Wufan,et al.New ap- [13]林玉荣,王强.基于一维经验模态分解的图像细节提取 proach to the automatic segmentation of coronary artery in X- 方法[J].吉林大学学报:工学版,2011,41(6):1766- ray angiograms[].Science in China Series F:Information 1770. Sciences,2008,51(1):25-39. LIN Yurong,WANG Qiang.Extracting details from images [10]SHIH M Y,TSENG D C.A wavelet-based multiresolution based on 1-DEMD[J].Journal of Jilin University:Engi- edge detection and tracking[J].Image and Vision Compu- neering and Technology Edition,2011,41(6):1766- ting,2005,23(4):441-451. 1770. [11]贾桂锋,袁胜发,唐成文.基于高阶导数改进的经验模态 [14]HARIHARAN H,KOSCHAN A,ABIDI B,et al.Fusion 分解算法[J刀.数据采集与处理,2012,27(1):117-120. of visible and infrared images using empirical mode decom- JIA Guifeng,YUAN Shengfa,TANG Chengwen.Modified position to improve face recognition[C]//Proceedings of empirical mode decomposition algorithm based on higher IEEE International Conference on Image Processing.Atlan- derivative[J].Journal of Data Acquisition Processing, ta,GA:EEE,2006:2049-2052. 2012,27(1):117-120. 2016年先进云与大数据国际会议 The 2016 International Conference on Advanced Cloud and Big Data CBD2016) The 2016 is an International Conference on Advanced Cloud and Big Data.It provides an international forum for pres- enting and discussing emerging ideas and trends in advanced cloud and big data from both the research community as well as the industry.It permits researchers,developers,and providers from academia and industry to address the challenges and discuss their new ideas,research results,applications,and experience in the big data.CBD aims to improve interna- tional communication and cooperation and to promote big data processing. Topics of particular interest include,but are not limited to: 1)Fundamentals,Models and Algorithms: Cloud Data Security and Privacy;Big Data Acquisition and Integration;Cloud Resource Management and Perform- ance;Big Data Processing(Analytics,Querying,Mining);Cloud Data Management;Big Data Storage and Management; Storage Architecture of Cloud;Big Data Graph algorithms;Green Cloud;Personal Data Protection and Usage;Networking Technologies for Data Center;Algorithms for Enhancing Data Quality;Virtualization Technologies. 2)Design Methodologies and Tools: Cloud Computing Platforms;Big Data Platforms;Cloud Computing Specifications and Standards;Big Data Toolkits; Big Data As A Service 3)Applications and Interdisciplinary Topics: Cloud Computing Solutions;Big Data in Enterprise Models and Practices;Mobile Cloud Computing Applications;Big Data Analytics in e-Government and Society;Big Data in Business Performance Management;Big Data Applications in So- cial Credit System In addition to research papers,CBD2016 also seeks exhibitions of modern products and equipment for computer sci- ence and information engineering. website:http://cbd2016.scu.edu.cn/index.html
吉林大学, 2010. KANG Wenwei. The segmentation methods of coronary an⁃ giogram images[D]. Changchun, China: Jilin University, 2010. [9]周寿军, 杨俊, 陈武凡, 等. 一种从 X 射线血管造影图 像中自动分割冠状动脉的新方法[ J]. 中国科学 E 辑: 信息科学, 2007, 37(12): 1531⁃1543. ZHOU Shoujun, YANG Jun, CHEN Wufan, et al. New ap⁃ proach to the automatic segmentation of coronary artery in X⁃ ray angiograms[J]. Science in China Series F: Information Sciences, 2008, 51(1): 25⁃39. [10]SHIH M Y, TSENG D C. A wavelet⁃based multiresolution edge detection and tracking[J]. Image and Vision Compu⁃ ting, 2005, 23(4): 441⁃451. [11]贾桂锋, 袁胜发, 唐成文. 基于高阶导数改进的经验模态 分解算法[J]. 数据采集与处理, 2012, 27(1): 117⁃120. JIA Guifeng, YUAN Shengfa, TANG Chengwen. Modified empirical mode decomposition algorithm based on higher derivative[ J]. Journal of Data Acquisition & Processing, 2012, 27(1): 117⁃120. [12]钟佑明, 赵强, 周建庭. 实时经验模态分解的实现方法 [J]. 振动、测试与诊断, 2012, 32(1): 68⁃72. ZHONG Youming, ZHAO Qiang, ZHOU Jianting. Appli⁃ cation of residual⁃based cumulative sum control charts for detecting faults in autocorrelated processes[ J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(1): 68⁃ 72. [13]林玉荣, 王强. 基于一维经验模态分解的图像细节提取 方法[J]. 吉林大学学报:工学版, 2011, 41(6): 1766⁃ 1770. LIN Yurong, WANG Qiang. Extracting details from images based on 1⁃DEMD[ J]. Journal of Jilin University: Engi⁃ neering and Technology Edition, 2011, 41 ( 6 ): 1766⁃ 1770. [14]HARIHARAN H, KOSCHAN A, ABIDI B, et al. Fusion of visible and infrared images using empirical mode decom⁃ position to improve face recognition [ C] / / Proceedings of IEEE International Conference on Image Processing. Atlan⁃ ta, GA: IEEE, 2006: 2049⁃2052. 2016 年先进云与大数据国际会议 The 2016 International Conference on Advanced Cloud and Big Data ( CBD2016) The 2016 is an International Conference on Advanced Cloud and Big Data. It provides an international forum for pres⁃ enting and discussing emerging ideas and trends in advanced cloud and big data from both the research community as well as the industry. It permits researchers, developers, and providers from academia and industry to address the challenges and discuss their new ideas, research results, applications, and experience in the big data. CBD aims to improve interna⁃ tional communication and cooperation and to promote big data processing. Topics of particular interest include, but are not limited to: 1)Fundamentals, Models and Algorithms: Cloud Data Security and Privacy; Big Data Acquisition and Integration; Cloud Resource Management and Perform⁃ ance; Big Data Processing (Analytics, Querying, Mining); Cloud Data Management; Big Data Storage and Management; Storage Architecture of Cloud; Big Data Graph algorithms; Green Cloud; Personal Data Protection and Usage; Networking Technologies for Data Center; Algorithms for Enhancing Data Quality; Virtualization Technologies. 2)Design Methodologies and Tools: Cloud Computing Platforms;Big Data Platforms; Cloud Computing Specifications and Standards;Big Data Toolkits; Big Data As A Service 3)Applications and Interdisciplinary Topics: Cloud Computing Solutions;Big Data in Enterprise Models and Practices; Mobile Cloud Computing Applications;Big Data Analytics in e⁃Government and Society; Big Data in Business Performance Management;Big Data Applications in So⁃ cial Credit System In addition to research papers, CBD2016 also seeks exhibitions of modern products and equipment for computer sci⁃ ence and information engineering. website:http: / / cbd2016.scu.edu.cn / index.html 第 6 期 邵欣,等:基于 EMD 和模极大值的造影图像血管提取 ·857·