大学物理练习册一绪论 0-1已知a=127+4m,b=-10m,试分别用作图法和解析法求解:(1)a+b:(2)a-b。 解:(1)a+b=(127+47-101)m=(27+4万) a+b|=√22+42=√20= arctan-=634° a+b (2)a-b=(12i+4j+101)m=(22i+4万)m b=22+4=1050=atmn2=103°(图略) 0-2两矢量a=6+12,b=-8-67m,试求:(1)ab;(2)axb 解:(1)a·b=(61+12)·(-81-6j)=-48-72=-120 (2)a×b=(61+12j)×(-81-6j)=-36k+96k=60k 0-3三矢量构成一个三角形,如图0-3所示。已知|a=3m,|b}=4m,|=5m,求:(1)|a+b| (2)ab:(3)a×b。 解:(1)+b=4=|=5m (2)∵a⊥b,∴a·b=0 (3)a×b=37×47=-12k 0-4已知F=(3+21)-3e-+2sin5tk,求下列各式在t=0时的值:(1) (3)F (4)F 解:(1)=(32+2)+6e27+10c0s5k,t=0时,f=37,=27+67+10k dt dr d(-3j)(6j+10k)=-18 dp x-(+) =(-3j)×(6j+10k)
大学物理练习册—绪论 0-1 已知 a 12i 4 j m v v v = + ,b 10i m v v = − ,试分别用作图法和解析法求解:(1) a b v v + ;(2) a b v v − 。 解:(1) a b (12i 4 j 10i )m (2i 4 j)m v v v v v v v + = + − = + θ j v 4 a b v v 2 4 20 + 2 2 a + b = + = v v = = 63.4° 2 4 θ arctan (2) a b (12i 4 j 10i )m (22i 4 j)m v v v v v v v − = + + = + 22 4 10 5 2 2 a −b = + = v v = =10.3° 22 4 θ arctan (图略) i v 2 0-2 两矢量 a i j v v v = 6 +12 ,b 8i 6 j m v v v = − − ,试求:(1) a b v v ⋅ ;(2) a b v v × 。 解:(1) a ⋅ b = (6 i +12 j) ⋅(−8i − 6 j) = −48− 72 = −120 v v v v v v (2) a b i j i j k k k v v v v v v v v v × = (6 +12 ) × (−8 − 6 ) = −36 + 96 = 60 0-3 三矢量构成一个三角形,如图 0-3 所示。已知| a |= 3m v ,| b |= 4m v ,| c |= 5m v ,求:(1)| a b | v v + ; (2) a b v v ⋅ ;(3) a b v v × 。 解:(1) a + b = − c = c = 5m v v v v (2) a b v v Q ⊥ ,∴ a ⋅ b = 0 v v (3) a b j i k v v v v v × = 3 × 4 = −12 0-4 已知 r t t i e j tk t v v v v ( 2 ) 3 2sin 5 3 2 = + − + − ,求下列各式在t = 0时的值:(1) t r d d v ;(2) t r d d v ;(3) t r r d d v v ⋅ ; (4) t r r d d v v × 。 解:(1) t i e j t k t r t v v v v (3 2) 6 10 cos5 d d 2 2 = + + + − ,t = 0时, r j v v = 3 , i j k t r v v v v 2 6 10 d d = + + (2) 2 6 10 140 d d 2 2 2 = + + = t r v (3) ( 3 ) (6 10 ) 18 d d ⋅ = − j ⋅ j + k = − t r r v v v v v (4) j j k i t r r v v v v v v ( 3 ) (6 10 ) 30 d d × = − × + = − 1