第六节隐函数的导数由参数方程 所确定的函数的导数相关变化率 四一、隐函数的导数 四二、对数求导法 四三、由参数方程所确定的函数的导数 四四、相关变化率 四五、小结思考题
、隐函数的导数 上定义:由方程所确定的函数y=y(x)称为隐函数 y=f(x)形式称为显函数 cF(x,y)=0y=f(x)隐函数的显化 问题隐函数不易显化或不能显化如何求导? 隐函数求导法则: 牛用复合函数求导法则直接对方程两边求导 上页
一、隐函数的导数 定义: 由方程所确定的函数 y = y(x)称为隐函数. y = f (x) 形式称为显函数. F(x, y) = 0 y = f (x) 隐函数的显化 问题:隐函数不易显化或不能显化如何求导? 隐函数求导法则: 用复合函数求导法则直接对方程两边求导
例1求由方程xy-e+e=0所确定的隐函数 y的导数, x=0° 解方程两边对求导 v+x e e④ =0 d x 解得"=C-y由原方程知x=0,y=0 dx x+e! dy e -y dxx=0 x+e=0=1 上页
例1 , . 0 =0 − + = x x y dx dy dx dy y xy e e 的导数 求由方程 所确定的隐函数 解 方程两边对x求导, + − + = 0 dx dy e e dx dy y x x y 解得 , y x x e e y dx dy + − = 由原方程知 x = 0, y = 0, 0 0 0 = = = + − = y y x x x x e e y dx dy = 1
例2设曲线C的方程为x3+p3=3x,求过C上 庄点,的切线方程并证明曲线C在该点的法 线通过原点 解方程两边对求导,3x2+3y2y=3y+3xy y-x 1 y-x 3 所求切线方程为y-=-(x 即x+y-3=0 2 2 法线方程为,33 2Nx2=x,显然通过原点
例2 . ) , 2 3 , 2 3 ( 3 , 3 3 线通过原点 点 的切线方程 并证明曲线 在该点的法 设曲线 的方程为 求 过 上 C C x + y = xy C 解 方程两边对x求导, 3x + 3 y y = 3 y + 3xy 2 2 ) 2 3 , 2 3 ( 2 2 ) 2 3 , 2 3 ( y x y x y − − = = −1. 所求切线方程为 ) 2 3 ( 2 3 y − = − x − 即 x + y − 3 = 0. 2 3 2 3 法线方程为 y − = x − 即 y = x, 显然通过原点
例3设x4-y+y4=1,求y在点(0,1)处的值 解方程两边对x求导得 4x3-y-x+4y2y=0 代入x=0,y=1得y1x0= y=1 将方程(1)两边再对x求导得 12x2-2y-xy"+12y2(jy)2+4y3y"=0 代入x=0,y=1,y1x-=7得y1x-0 4 y=1 16 上页
例 3 1, (0,1) . 设 x4 − xy + y4 = 求y 在点 处的值 解 方程两边对x求导得 4 4 0 (1) 3 3 x − y − xy + y y = 代入 x = 0, y = 1 得 ; 41 1 0 = == yx y 将方程(1)两边再对x求导得 12 2 12 ( ) 4 0 2 2 2 3 x − y − xy + y y + y y = 得41 1 0 = ==yx 代入 x = 0, y = 1, y . 161 1 0 = − == yx y
二、对数求导法 观察函数y(xAP=xm (x+1)3x-1 方法: 先在方程两边取对数,然后利用隐函数的求导 方法求出导数 对数求导法 上适用范围: 牛多个函数相乘和幂指函数x)y的情形 王页下
二、对数求导法 观察函数 , . ( 4) ( 1) 1 sin 2 3 x x y x x e x x y = + + − = 方法: 先在方程两边取对数, 然后利用隐函数的求导 方法求出导数. --------对数求导法 适用范围: ( ) . 多个函数相乘和幂指函数u x v ( x )的情形
例4设,(x+1) 3x-1 (x+4)2 解等式两边取对数得 In y=In(+1)+n(x-1)-2In(x+4)-x 3 上式两边对x求导得 J 2 1 yx+13(x-1)x+4 (x+1)x 2 (x+4)2ex+13(x-1)x+4 上页
例4 解 1] 4 2 3( 1) 1 1 1 [ ( 4) ( 1) 1 2 3 − + − − + + + + − = x e x x x x x y x 等式两边取对数得 y = x + + ln( x − 1) − 2ln( x + 4) − x 3 1 ln ln( 1) 上式两边对x求导得 1 4 2 3( 1) 1 1 1 − + − − + + = y x x x y , . ( 4) ( 1) 1 2 3 y x e x x y x + + − 设 = 求
例5设y=xmx(x>0),求y 解等式两边取对数得y= sinxInx 上式两边对x求导得 y'=cos x Inx+sinx. ∴y=y( cosx Inx+simn =x(cos x In x sin a 上页
例5 解 ( 0), . sin y x x y x 设 = 求 等式两边取对数得 ln y = sin x ln x 上式两边对x求导得 x y x x x y 1 cos ln sin 1 = + ) 1 (cos ln sin x y = y x x + x ) sin (cos ln sin x x x x x x = +
王一般地 出f(x)=u(x)((x)>0) In∫(x)=v(x)·lnau(x) 1 d 又∴,Inf(x)= ∫(x)dxo ∫(x) d x ∴∫(x)=f(x),If(x) dx f(x=(x)Iv(x). Inu(x)+ v((x u(r) 上页
一般地 ( ) ( ) ( ( ) 0) ( ) f x = u x u x v x ( ) ( ) 1 ln ( ) f x dx d f x f x dx d 又 = ( ) ( ) ln f (x) dx d f x = f x ] ( ) ( ) ( ) ( ) ( ) [ ( ) ln ( ) ( ) u x v x u x f x u x v x u x v x = + ln f (x) = v(x)lnu(x)
三、由参数方程所确定的函数的导数 若参数方程 x=() 确定y与x间的函数关系, y=y(t) 称此为由参数方程所确定的函数 例如x=2, →t 消去参数t y=t 2 y=t2=(35=x 2 问题:消参困难或无法消参如何求导? 上页
三、由参数方程所确定的函数的导数 . , ( ) ( ) 称此为由参数方程所确定的函数 若参数方程 确 定 y与x间的函数关系 y t x t = = 例如 = = , 2 , 2 y t x t 2 x t = 2 2 ) 2 ( x y = t = 4 2 x = y x 2 1 = 消去参数 问题: 消参困难或无法消参如何求导? t