免费下载网址htp:/ jiaoxue5u. ysl68c0m §2.4二次函数y=ax2+bx+c的图象 课时安排 2课时 容说课 本节课在二次函数y=ax2和y=ax2+c的图象的基础上,进一步研究y=a(x-h)2和y =a(x-h)2+k的图象,并探索它们之间的关系和各自的性质.旨在全面掌握所有二次函数 的图象和性质的变化情况.同时对二次函数的研究,经历了从简单到复杂,从特殊到一般 的过程:先是从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k, y=ax2+bx+c.符合学生的认知特点,体会建立二次函数对称轴和顶点坐标公式的必要性 在教学中,主要是让学生自己动手画图象,通过自己的观察、交流、对比、概括和反 等探索活动,使学生达到对抛物线自身特点的认识和对二次函数性质的理解.并能利用它 的性质解决问题 第1课时 课题 §2.4.1二次函数y=ax2+bx+c的图象(一) 教学目标 (一)教学知识点 1.能够作出函数y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的 关系.理解a,h,k对二次函数图象的影响 2.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标 (二)能力训练要求 1.通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认 识和对二次函数性质的理解 2.经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力 (三)情感与价值观要求 1.经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能 力,能有条理地、清晰地阐述自己的观点. 2.让学生学会与人合作,并能与他人交流思维的过程和结果 教学重点 1.经历探索二次函数y=ax2+bxc的图象的作法和性质的过程 2.能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系, 理解a、h、k对二次函数图象的影响 3.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标 教学难点 能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能够理解它与y=ax2的图象的关系 理解a、h、k对二次函数图象的影响 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: JIaoxue5 u taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com §2.4 二次函数 y=ax2 +bx+c 的图象 课时安排 2 课时 从容说课 本节课在二次函数 y=ax 2 和 y=ax 2 +c 的图象的基础上,进一步研究 y=a(x-h)2 和 y =a(x-h)2 +k 的图象,并探索它们之间的关系和各自的性质.旨在全面掌握所有二次函数 的图象和性质的变化情况.同时对二次函数的研究,经历了从简单到复杂,从特殊到一般 的过程:先是从 y=x 2 开始,然后是 y=ax 2,y=ax 2 +c,最后是 y=a(x-h) 2,y=a(x-h)2 +k, y=ax 2 +bx+c.符合学生的认知特点,体会建立二次函数对称轴和顶点坐标公式的必要性. 在教学中,主要是让学生自己动手画图象,通过自己的观察、交流、对比、概括和反 思 等探索活动,使学生达到对抛物线自身特点的认识和对二次函数性质的理解.并能利用它 的性质解决问题. 第 1 课时 课 题 §2.4.1 二次函数 y=ax 2 +bx+c 的图象(一) 教学目标 (一)教学知识点 1.能够作出函数 y=a(x-h)2 和 y=a(x-h)2 +k 的图象,并能理解它与 y=ax 2 的图象的 关系.理解 a,h,k 对二次函数图象的影响. 2.能够正确说出 y=a(x-h)2 +k 图象的开口方向、对称轴和顶点坐标. (二)能力训练要求 1.通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认 识和对二次函数性质的理解. 2.经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力. (三)情感与价值观要求 1.经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能 力,能有条理地、清晰地阐述自己的观点. 2.让学生学会与人合作,并能与他人交流思维的过程和结果. 教学重点 1.经历探索二次函数 y=ax 2 +bx+c 的图象的作法和性质的过程. 2.能够作出 y=a(x-h)2 和 y=a(x-h)2 +k 的图象,并能理解它与 y=ax 2 的图象的关系, 理解 a、h、k 对二次函数图象的影响. 3.能够正确说出 y=a(x-h)2 +k 图象的开口方向、对称轴和顶点坐标. 教学难点 能够作出 y=a(x-h)2 和 y=a(x-h)2 +k 的图象,并能够理解它与 y=ax 2 的图象的关系, 理解 a、h、k 对二次函数图象的影响.
免费下载网址htp:/ jiaoxue5uys168.c0m 教学方法 探索一一比较一一总结法 教具准备 投影片四张 第一张:(记作§2.4.1A) 第二张:(记作§2.4.1B) 第三张:(记作§2.4.1C) 第四张:(记作§2.4.1D) 教学过程 Ⅰ.创设问题情境、引入新课 [师]我们已学习过两种类型的二次函数,即y=ax2与y=ax2+c,知道它们都是轴对 称图形,对称轴都是y轴,有最大值或最小值.顶点都是原点.还知道y=ax2+c的图象是 函数y=ax2的图象经过上下移动得到的,那么y=ax2的图象能否左右移动呢?它左右移动后 又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题 Ⅱ.新课讲解 、比较函数y=3x2与y=3(X-1)2的图象的性质 投影片:(§2.4A) (1)完成下表,并比较3x2和3(x-1)2的值, 它们之间有什么关系 3x2 3(x-1) (2)在下图中作出二次函数y=3(x-1)2的图象.你是怎样作的? 3x =3(x-1)2 (3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和 顶点坐标分别是什么? (4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1) 的值随x值的增大而减小? 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: JIaoxue5 u taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 教学方法 探索——比较——总结法. 教具准备 投影片四张 第一张:(记作§2.4.1 A) 第二张:(记作§2.4.1 B) 第三张:(记作§2.4.1 C) 第四张:(记作§2.4.1 D) 教学过程 Ⅰ.创设问题情境、引入新课 [师]我们已学习过两种类型的二次函数,即 y=ax 2 与 y=ax 2 +c,知道它们都是轴对 称图形,对称轴都是 y 轴,有最大值或最小值.顶点都是原点.还知道 y=ax 2 +c 的图象是 函数 y=ax 2 的图象经过上下移动得到的,那么 y=ax 2 的图象能否左右移动呢?它左右移动后 又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题. Ⅱ.新课讲解 一、比较函数 y=3x2 与 y=3(X-1)2 的图象的性质. 投影片:(§2.4 A) (1)完成下表,并比较 3x2 和 3(x-1)2 的值, 它们之间有什么关系? X -3 -2 -1 0 1 2 3 4 3x2 3(x-1)2 (2)在下图中作出二次函数 y=3(x-1)2 的图象.你是怎样作的? (3)函数 y=3(x-1) 2 的图象与 y=3x 2 的图象有什么关系?它是轴对称图形吗?它的对称轴和 顶点坐标分别是什么? (4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1) 2 的值随 x 值的增大而减小?
免费下载网址htp:jiaoxue5uys168.com [师]请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结 [生](1)第二行从左到右依次填:27.12,3,0,3,12,27,48:第三行从左到右依 次填48,27,12,3,0,3,12,27 (2)用描点法作出y=3(x-1)2的图象,如上图 (3)二次函数)y=3(x-1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称 轴和顶点坐标不同,y=3(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0) (4)当x1时,函数y=3(x-1)2的值随x值的增大而增大,x<1时,y=3(x-1)2的值随 值的增大而减小 [师]能否用移动的观点说明函数y=3x2与y=3(x-1)2的图象之间的关系呢? [生]y=3(x-1)2的图象可以看成是函数)y=3x2的图象整体向右平移得到的 [师]能像上节课那样比较它们图象的性质吗? [生]相同点 a.图象都中抛物线,且形状相同,开口方向相同. b.都是轴对称图形 c.都有最小值,最小值都为0 d.在对称轴左侧,y都随x的增大而减小.在对称轴右侧,y都随x的增大而增大 不同点 a.对称轴不同,y=3x2的对称轴是y轴y=3(x-1)2的对称轴是x=1 b.它们的位置不问 C.它们的顶点坐标不同.y=3x2的顶点坐标为(0,0),y=3(x-1)2的顶点坐标为(1, 联系: 把函数y=3x2的图象向右移动一个单位,则得到函数y=3(x-1)2的图像 、做一做 投影片:(§2 在同一直角坐标系中作出函数y=3(x-1)2和y=3(x-1)2+2的图象.并比较它们图象 性质 [生]图象如下 y=3(x-1)+2 10!|y=3(x-1) 它们的图象的性质比较如下: 解压密码联系qq119139686加徹信公众号 Jaoxuewuyou九折优惠!淘 宝网址: JIaoxue5 u taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com [师]请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结. [生](1)第二行从左到右依次填:27.12,3,0,3,12,27,48;第三行从左到右依 次填 48,27,12,3,0,3,12,27. (2)用描点法作出 y=3(x-1)2 的图象,如上图. (3)二次函数)y=3(x-1)2 的图象与 y=3x 2 的图象形状相同,开口方向也相同,但对称 轴和顶点坐标不同,y=3(x-1)2 的图象的对称轴是直线 x=1,顶点坐标是(1,0). (4)当 x>1 时,函数 y=3(x-1)2 的值随 x 值的增大而增大,x<1 时,y=3(x-1)2 的值随 x 值的增大而减小. [师]能否用移动的观点说明函数 y=3x 2 与 y=3(x-1)2 的图象之间的关系呢? [生]y=3(x-1)2 的图象可以看成是函数)y=3x 2 的图象整体向右平移得到的. [师]能像上节课那样比较它们图象的性质吗? [生]相同点: a.图象都中抛物线,且形状相同,开口方向相同. b. 都是轴对称图形. c.都有最小值,最小值都为 0. d.在对称轴左侧,y 都随 x 的增大而减小.在对称轴右侧,y 都随 x 的增大而增大. 不同点: a.对称轴不同,y=3x2 的对称轴是 y 轴 y=3(x-1) 2 的对称轴是 x=1. b. 它们的位置不问. c. 它们的顶点坐标不同.y=3x2 的顶点坐标为(0,0),y=3(x-1) 2 的顶点坐标为(1, 0), 联系: 把函数 y=3x2 的图象向右移动一个单位,则得到函数 y=3(x-1)2 的图像. 二、做一做 投影片:(§2.4.1 B) 在同一直角坐标系中作出函数 y=3(x-1)2 和 y=3(x-1)2 +2 的图象.并比较它们图象 的性质. [生]图象如下 它们的图象的性质比较如下:
免费下载网址htp:/ jiaoxue5uys168.c0m 相同点 a.图象都是抛物线,且形状相同,开口方向相同 都足轴对称图形,对称轴都为x=1 c.在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大 不同点: a.它们的顶点不同,最值也不同.y=3(x-1)2的顶点坐标为(1.0),最小值为0.y 3(x-1)2+2的顶点坐标为(1,2),最小值为2 b.它们的位置不同 联系: 把函数y=3(x-1)2的图象向上平移2个单位,就得到了函数y=3(x-1)2+2的图象. 总结函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象之间的关系 [师]通过上画的讨论,大家能够总结出这三种函数图象之间的关系吗? [生]可以 二次函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象都是抛物线.并且形状相同,开口 方向相同,只是位置不同,顶点不同,对称轴不同,将函数y=3x2的图象向右平移1个单 位,就得到函数y=3(x-1)2的图象:再向上平移2个单位,就得到函数y=3(x-1)2+2的图 [师]大家还记得y=3x2与y=3x2-1的图象之间的关系吗? [生]记得,把函数y=3x2向下平移1个平位,就得到函数y=3x2-1的图象 [师]你能系统总结一下吗? [生]将函数y=3x2的图象向下移动1个单位,就得到了函数y=3x2-1的图象,向上移 动1个单位,就得到函数y=3x2+1的图象:将y=3x2的图象向右平移动1个单位,就得 到函数y=3(x-1)2的图象:向左移动1个单位,就得到函数y=3(x+1)2的图象:由函数y 3x2向右平移1个单位、再向上平移2个单位,就得到函数y=3(x-1)2+2的图象 [师]下面我们就一般形式来进行总结 投影片:(§ 般地,平移二次函数y=ax2的图象便可得到二次函数为y=ax2+c,y=a(x-h)2,y=a(x-h)2+k 的图象 (1)将y=ax2的图象上下移动便可得到函数y=ax2+c的图象,当c>0时,向上移动,当c0时,向右移动, 当h<0时,向左移动 (3)将函数y=ax2的图象既上下移,又左右移,便可得到函数y=a(x-h)2+k的图象 因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与a,h,k 的值有关 下面大家经过讨论之后,填写下表 「y=a(x-h)+k开口方向对称轴顶点坐标1 解压密码联系qq19139686加徹信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: JIaoxue5 u taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 相同点: a.图象都是抛物线,且形状相同,开口方向相同. b. 都足轴对称图形,对称轴都为 x=1. c. 在对称轴左侧,y 都随 x 的增大而减小,在对称轴右侧,y 都随 x 的增大而增大. 不同点: a.它们的顶点不同,最值也不同.y=3(x-1) 2 的顶点坐标为(1.0),最小值为 0.y =3(x-1)2 +2 的顶点坐标为(1,2),最小值为 2. b. 它们的位置不同. 联系: 把函数 y=3(x-1)2 的图象向上平移 2 个单位,就得到了函数 y=3(x-1)2 +2 的图象. 三、总结函数 y=3x2,y=3(x-1)2,y=3(x-1)2 +2 的图象之间的关系. [师]通过上画的讨论,大家能够总结出这三种函数图象之间的关系吗? [生]可以. 二次函数 y=3x2,y=3(x-1) 2,y=3(x-1)2 +2 的图象都是抛物线.并且形状相同,开口 方向相同,只是位置不同,顶点不同,对称轴不同,将函数 y=3x2 的图象向右平移 1 个单 位,就得到函数 y=3(x-1)2 的图象;再向上平移 2 个单位,就得到函数 y=3(x-1)2 +2 的图 象. [师]大家还记得 y=3x 2 与 y=3x2 -1 的图象之间的关系吗? [生]记得,把函数 y=3x2 向下平移 1 个平位,就得到函数 y=3x2 -1 的图象. [师]你能系统总结一下吗? [生]将函数 y=3x2 的图象向下移动 1 个单位,就得到了函数 y=3x2 -1 的图象,向上移 动 1 个单位,就得到函数 y=3x2 +1 的图象;将 y=3x2 的图象向右平移动 1 个单位,就得 到函数 y=3(x-1)2 的图象:向左移动 1 个单位,就得到函数 y=3(x+1)2 的图象;由函数 y =3x2 向右平移 1 个单位、再向上平移 2 个单位,就得到函数 y=3(x-1)2 +2 的图象. [师]下面我们就一般形式来进行总结. 投影片:(§2.4.1 C) 一般地,平移二次函数 y=ax 2 的图象便可得到二次函数为 y=ax 2 +c,y=a(x-h)2,y=a(x-h)2 +k 的图象. (1)将 y=ax 2 的图象上下移动便可得到函数 y=ax 2 +c 的图象,当 c>0 时,向上移动,当 c0 时,向右移动, 当 h<0 时,向左移动. (3)将函数 y=ax 2 的图象既上下移,又左右移,便可得到函数 y=a(x-h)2 +k 的图象. 因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与 a,h,k 的值有关. 下面大家经过讨论之后,填写下表: y=a(x-h)2 +k 开口方向 对称轴 顶点坐标 a>0
免费下载网址http:/jiaoxue5u.ys168.com -1时,y的值随x值的增大而增大 Ⅲ.课堂练习 随堂练习 Ⅳ.课时小结 本节课进一步探究了函数y=3x2与y=3(x-1)2,y=3(x-1)2+2的图象有什么关系,对 称轴和顶点坐标分别是什么这些问题.并作了归纳总结.还能利用这个结果对其他的函数 图象进行讨论 V.课后作业 习题2.4 Ⅵ.活动与探究 二次函数y=(x+2)2-1与y=(x-1)2+2的图象是由函数y=x2的图象怎样移动得 到的?它们之间是通过怎样移动得到的? 解:y=,(x+2)2-1的图象是由y=x的图象向左平移2个单位,再向下平移1个 单位得到的,y=-(x-1)2+2的图象是由y=x2的图象向右平移1个单位,再向上平移2 个单位得到的 y=(x+2)2-1的图象向右平移3个单位,再向上平移3个单位得到y=(x-1)2+2 的图象. 解压密码联系qq119139686加徹信公众号 Jaoxuewuyou九折优惠!淘 宝网址: JIaoxue5 u taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com a<0 四、议一议 投影片:(§2,4.1 D) (1)二次函数 y=3(x+1)2 的图象与二次函数 y=3x2 的图象有什么关系?它是轴对称图形吗? 它的对称轴和顶点坐标分别是什么? (2)二次函数 y=-3(x-2)2 +4 的图象与二次函数 y=-3x2 的图象有什么关系?它是轴对称图形 吗?它的对称轴和顶点坐标分别是什么? (3)对于二次函数 y=3(x+1)2,当 x 取哪些值时,y 的值随 x 值的增大而增大?当 x 取哪些 值时,y 的值随 x 值的增大而减小?二次函数 y=3(x+1) 2 +4 呢? [师]在不画图象的情况下,你能回答上面的问题吗? [生](1)二次函数 y=3(x+1)2 的图象与 y=3x2 的图象形状相同,开口方向也相同,但 对称轴和顶点坐标不同,y=3(x+1)2 的图象的对称轴是直线 x=-1,顶点坐标是(-1,0).只 要将 y=3x2 的图象向左平移 1 个单位,就可以得到 y=3(x+1)2 的图象. (2)二次函数 y=-3(x-2)2 +4 的图象与 y=-3x 2 的图象形状相同,只是位置不同,将函 数 y=-3x2 的图象向右平移 2 个单位,就得到 y=-3(x-2) 2 的图象,再向上平移 4 个单位, 就得到 y=-3(x-2) 2 +4 的图象 y=-3(x-2)2 +4 的图象的对称轴是直线 x=2,顶点坐标是(2,4). (3)对于二次函数 y=3(x+1) 2 和 y=3(x+1)2 +4,它们的对称轴都是 x=-1,当 x-1 时,y 的值随 x 值的增大而增大. Ⅲ.课堂练习 随堂练习 Ⅳ.课时小结 本节课进一步探究了函数 y=3x 2 与 y=3(x-1)2,y=3(x-1)2 +2 的图象有什么关系,对 称轴和顶点坐标分别是什么这些问题.并作了归纳总结.还能利用这个结果对其他的函数 图象进行讨论. Ⅴ.课后作业 习题 2.4 Ⅵ.活动与探究 二次函数 y= 2 1 (x+2) 2 -1 与 y= 2 1 (x-1) 2 +2 的图象是由函数 y= 2 1 x 2 的图象怎样移动得 到的?它们之间是通过怎样移动得到的? 解:y= 2 1 (x+2)2 -1 的图象是由 y= 2 1 x 2 的图象向左平移 2 个单位,再向下平移 1 个 单位得到的,y= 2 1 (x-1)2 +2 的图象是由 y= 2 1 x 2 的图象向右平移 1 个单位,再向上平移 2 个单位得到的. y= 2 1 (x+2) 2 -1 的图象向右平移 3 个单位,再向上平移 3 个单位得到 y= 2 1 (x-1) 2 +2 的图象.
免费下载网址htp:/ jiaoxue5uys168.c0m y=(x-1)2+2的图象向左平移3个单位,再向下平移3个单位得到y=(x+2)2-1 的图象 板书设计 §2.4.1二次函数y=ax2+bx+c的图象(一) 1.比较函数y=3x2与y=3(x-1)2的 图象和性质(投影片§2.4.1A) 2.做一做(投影片§2.4.1B) 3.总结函数y=3x2,y=3(x-1)2y=3(x-1)2+2的图象之间的关系(投影片§2.4.1C) 4.议一议(投影片§2.4.1D) 课堂练习 1.随堂练习 2.补充练习 、课时小结 四、课后作业 备课资料 参考练习 在同一直角坐标系内作出函数y=- (x+1)2-1的图象,并讨论它 们的性质与位置关系 解:图象略 它们都是抛物线,且开口方向都向下:对称轴分别为y轴y轴,直线x=-1:顶点坐标 分别为(0,0),(0,-1),(-1,-1) y=x的图象向下移动1个单位得到y≈1 x2-1的图象:y=-x2的图象向左移动1 个单位,向下移动1个单位,得到y=--(x+1)2-1的图象. 解压密码联系qq119139686加徹信公众号 Jaoxuewuyou九折优惠!淘 宝网址: JIaoxue5 u taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com y= 2 1 (x-1)2 +2 的图象向左平移 3 个单位,再向下平移 3 个单位得到 y= 2 1 (x+2)2 -1 的图象. 板书设计 §2.4.1 二次函数 y=ax 2 +bx+c 的图象(一) 一、1. 比较函数 y=3x2 与 y=3(x-1)2 的 图象和性质(投影片§2.4.1 A) 2.做一做(投影片§2.4.1 B) 3.总结函数 y=3x2,y=3(x-1)2 y= 3(x-1)2 +2 的图象之间的关系(投影片§2.4.1 C) 4.议一议(投影片§2.4.1 D) 二、课堂练习 1.随堂练习 2.补充练习 三、课时小结 四、课后作业 备课资料 参考练习 在同一直角坐标系内作出函数 y=- 2 1 x 2 ,y=- 2 1 x 2 -1,y=- 2 1 (x+1)2 -1 的图象,并讨论它 们的性质与位置关系. 解:图象略 它们都是抛物线,且开口方向都向下;对称轴分别为 y 轴 y 轴,直线 x=-1;顶点坐标 分别为(0,0),(0,-1),(-1,-1). y=- 2 1 x 2 的图象向下移动 1 个单位得到 y=- 2 1 x 2 -1 的图象;y=- 2 1 x 2 的图象向左移动 1 个单位,向下移动 1 个单位,得到 y=- 2 1 (x+1) 2 -1 的图象.
免费下载网址htp:/ jiaoxue5u. ysl68c0m 第2课时 课题 §2.4.2二次函数y=ax2+bx+c的图象(二) 教学目标 (一)教学知识点 1.体会建立二次函数对称轴和顶点坐标公式的必要性 2.能够利用二次函数的对称轴和顶点坐标公式解决问题 (二)能力训练要求 1.通过解决实际问题,让学生训练把教学知识运用于实践的能力 2.通过学生合作交流来解决问题,培养学生的合作交流能力 (三)情感与价值观要求 经历将一些实际问题抽象为数学问题的过程,掌握数学的基础知识和基本技能, 并能解决简单的问题 2.初步认识数学与人类生活的密切联系及对人类历史发展的作用 教学重点 运用二次函数的对称轴和顶点坐标公式解决实际问题 教学难点 把数学问题与实际问题相联系的过程 教学方法 讲解法 教具准备 投影片三张 第一张:(记作§2.4.2A) 第二张:(记作§2.4.2B) 第三张:(记作§2.4.2C) 教学过程 Ⅰ.创设问题情境,引入新课 [师]上节课我们主要讨论了相关函数y=ax2,y=a(x-h)2,y=a(x-h)-+k的图象的有 关性质,特别练习了求函数的对称轴和顶点坐标.我们知道学习的目的就是为了应用,那 么究竟有什么用处呢?本节课将学习有关二次函数的应用 Ⅱ.新课讲解 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: JIaoxue5 u taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 第 2 课时 课 题 §2.4.2 二次函数 y=ax 2 +bx+c 的图象(二) 教学目标 (一)教学知识点 1.体会建立二次函数对称轴和顶点坐标公式的必要性. 2.能够利用二次函数的对称轴和顶点坐标公式解决问题. (二)能力训练要求 1.通过解决实际问题,让学生训练把教学知识运用于实践的能力. 2.通过学生合作交流来解决问题,培养学生的合作交流能力. (三)情感与价值观要求 1.经历将一些实际问题抽象为数学问题的过程,掌握数学的基础知识和基本技能, 并能解决简单的问题. 2.初步认识数学与人类生活的密切联系及对人类历史发展的作用. 教学重点 运用二次函数的对称轴和顶点坐标公式解决实际问题. 教学难点 把数学问题与实际问题相联系的过程. 教学方法 讲解法. 教具准备 投影片三张 第一张:(记作§2.4.2 A) 第二张:(记作§2.4.2 B) 第三张:(记作§2.4.2 C) 教学过程 Ⅰ.创设问题情境,引入新课 [师]上节课我们主要讨论了相关函数 y=ax 2,y=a(x-h)2,y=a(x-h)-+k 的图象的有 关性质,特别练习了求函数的对称轴和顶点坐标.我们知道学习的目的就是为了应用,那 么究竟有什么用处呢?本节课将学习有关二次函数的应用. Ⅱ.新课讲解
免费下载网址htp:jiaoxue5uys168.com 、1.例题 [师]前几节课我们研究了不同形式的二次函数的图象,形如y=ax2,y=ax2+c,y= a(x-h)2,y=a(x-h)2+k.并对它们的性质进行了比较,但对于二次函数的一般形式y ax2+bx+c(a、b、c是常数,a≠0),它是属于上面形式中的哪一种呢?还是另外一种,它的 对称轴和顶点坐标是什么呢?下面我们一起来讨论这个问题 投影片:(§2.4.2A 例:求二次函数y=ax2+bx+c的对称轴和顶点坐标 解:把y=ax2+bx+c的右边配方,得 b x C 师]大家看配方以后的形式属于前面我们讨论过的哪一种形式呢? [生]属于y=a(x-h)2+k的形式 [师]在y=a(x-h)2+k的形式中,我们知道对称轴为x=h顶点坐标为(h,k).对比一下, y=ax2+bx+c中的对称轴和顶点坐标是什么呢? [生甲]对称轴是x=b b 4ac-b2 ,顶点坐标是( [师]确定吗?大家再讨论一下 b 4ac-b [生]在y=a(x-h)2+k中是x-h,而y=a(x+)2+ 中是 它们的符 号不同,应把y=a(x+b)+4=b2,进行变形得y=a(-(-b 4ac-b2 对照y=a(x-h)2+k的形式得对称轴为xb 顶点燃坐标为( b 4aC-b2 4 [师]这位同学回答得非常棒 至此,所有的二次函数的形式我们就都讨论过了 下面我们来研究一些实际问题 有关桥梁问题 投影片:(§2.4.2B) 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: JIaoxue5 u taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 一、1. 例题 [师]前几节课我们研究了不同形式的二次函数的图象,形如 y=ax 2,y=ax 2 +c,y= a(x-h)2,y=a(x-h)2 +k.并对它们的性质进行了比较.但对于二次函数的一般形式 y= ax 2 +bx+c(a、b、c 是常数,a≠0),它是属于上面形式中的哪一种呢?还是另外一种,它的 对称轴和顶点坐标是什么呢?下面我们一起来讨论这个问题. 投影片:(§2.4.2 A) 例:求二次函数 y=ax 2 +bx+c 的对称轴和顶点坐标. 解:把 y=ax 2 +bx+c 的右边配方,得 y=ax 2 +bx+c =a(x2 + a c x a b + ) =a[x2 +2· a b 2 x+( a b 2 ) 2 + 2 ) 2 ( a b a c − ] =a(x+ a b 2 ) 2 + a ac b 4 4 2 − . [师]大家看配方以后的形式属于前面我们讨论过的哪一种形式呢? [生]属于 y=a(x-h)2 +k 的形式. [师]在 y=a(x-h)2 +k 的形式中,我们知道对称轴为 x=h 顶点坐标为(h,k).对比一下, y=ax 2 +bx+c 中的对称轴和顶点坐标是什么呢? [生甲]对称轴是 x= a b 2 ,顶点坐标是( a b 2 , a ac b 4 4 2 − ). [师]确定吗?大家再讨论一下. [生]在 y=a(x-h)2 +k 中是 x-h,而 y=a (x+ a b 2 ) 2 + a ac b 4 4 2 − 中是 x+ a b 2 ,它们的符 号不同,应把 y=a(x+ a b 2 )2 + a ac b 4 4 2 − .进行变形得 y=a[x-(- a b 2 ) 2 ]+ a ac b 4 4 2 − .再 对照 y=a(x-h)2 +k 的形式得对称轴为 x=- a b 2 ,顶点燃坐标为(- a b 2 , a ac b 4 4 2 − ) [师]这位同学回答得非常棒. 至此,所有的二次函数的形式我们就都讨论过了. 下面我们来研究一些实际问题. 二、有关桥梁问题 投影片:(§2.4.2 B)
免费下载网址htp:/ jiaoxue5uys168.c0m 下图所示桥梁的两条钢缆具有相同的抛物线形状.按照图中的直角坐标系,左面的一条抛 物线可以用y=0.0225x2+0.9x+10表示,而且左右两条抛物线关于y轴对称 V/m 5O5 (1)钢缆的最低点到桥面的距离是多少? (2)两条钢缆最低点之间的距离是多少? (3)你是怎样计算的?与同伴进行交流 分析:因为两条钢缆都是抛物线形状,且开口向上.要求钢缆的最低点到桥面的距离 就是要求抛物线的最小值.又因为左右两条抛物线关于y轴对称,所以它们的顶点也关于 y轴对称,两条钢缆最低点之间的距离就是两条抛物线顶点的横坐标绝对值之和或其中 条抛物线顶点横坐标绝对值的2倍.已知二次函数的形式是一般形式,所以应先进行配方 化为y=a(x-h)2+k的形式,即顶点式 解:y=0.0225x2+0.9x+10 =0.0225(2+40x+4000 二0.0225(x2+40x+400-400 4000 =0.0225(x+20)2+1 ∴对称轴为x=-20.顶点坐标为(-20,1) (1)钢缆的最低点到桥面的距离是1米 (2)两条钢缆最低点之间的距离是2×20=40米 3)是用配方法求得顶点坐标得到的,也可以直接代入顶点坐标公式中求得 [师]从上面的例题我们可知,抛物线在现实生活中的应用很广,因此大家要学好并运 用好它,对于给出的问题要认真思考,把实际问题转化为数学问题,从而用数学知识解决 实际问题 在上面的问题中,大家能否求出右面的抛物线的表达式呢?请互相交流 解:因为左右两条抛物线是关于y轴对称的,而关于y轴对称的图形的特点是,所有 的对应点的坐标满足横坐标是互为相反数,纵坐标相等,我们可以利用这个特点,在原有 的左面的抛物线的表达式的基础上,得到右面抛物线的表达式,即把y不变,x换为-x代 入y=0.0225x2+0.9x+10中,得 y=0.0225(-x)2+0.9(-x)+10 0.0225x2-0. 三、补充例题 解压密码联系qq1939686加徹信公众号 九折优惠!淘 宝网址: JIaoxue5 u taob
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 下图所示桥梁的两条钢缆具有相同的抛物线形状.按照图中的直角坐标系,左面的一条抛 物线可以用 y=0.0225x2 +0.9x+10 表示,而且左右两条抛物线关于 y 轴对称. (1)钢缆的最低点到桥面的距离是多少? (2)两条钢缆最低点之间的距离是多少? (3)你是怎样计算的?与同伴进行交流. 分析:因为两条钢缆都是抛物线形状,且开口向上.要求钢缆的最低点到桥面的距离 就是要求抛物线的最小值.又因为左右两条抛物线关于 y 轴对称,所以它们的顶点也关于 y 轴对称,两条钢缆最低点之间的距离就是两条抛物线顶点的横坐标绝对值之和或其中一 条抛物线顶点横坐标绝对值的 2 倍.已知二次函数的形式是一般形式,所以应先进行配方 化为 y=a(x-h)2 +k 的形式,即顶点式. 解:y=0.0225x2 +0.9x+10 =0.0225(x2 +40x+ 9 4000 ) 二 0.0225(x2 +40x+400-400+ 9 4000 ) =0.0225(x+20)2 +1. ∴对称轴为 x=-20.顶点坐标为(-20,1). (1)钢缆的最低点到桥面的距离是 1 米. (2)两条钢缆最低点之间的距离是 2×20=40 米. (3)是用配方法求得顶点坐标得到的,也可以直接代入顶点坐标公式中求得. [师]从上面的例题我们可知,抛物线在现实生活中的应用很广,因此大家要学好并运 用好它,对于给出的问题要认真思考,把实际问题转化为数学问题,从而用数学知识解决 实际问题. 在上面的问题中,大家能否求出右面的抛物线的表达式呢?请互相交流. 解:因为左右两条抛物线是关于 y 轴对称的,而关于 y 轴对称的图形的特点是,所有 的对应点的坐标满足横坐标是互为相反数,纵坐标相等,我们可以利用这个特点,在原有 的左面的抛物线的表达式的基础上,得到右面抛物线的表达式,即把 y 不变,x 换为-x 代 入 y=0.0225x2 +0.9x+10 中,得 y=0.0225(-x)2 +0.9(-x)+10 =0.0225x2 -0.9x+10. 三、补充例题
免费下载网址htp:jiaoxue5uys168.com 投影片:(§2.4.2C) 如右图,一边靠校园院墙,另外 边用50m长的篱笆,围起一个长 方形场地,设垂直院墙的边长为xm (1)写出长方形场地面积y(m2)与x的函数关系式 (2)画出函数的图象 (3)求边长为多少时,长方形面积最大,最大是多少? 解:(1)垂直院墙的边长为xm,另一边长为(50-2x)m.则 y=x(502x)=-2x2+50x=2(x-2)4625 (2)图象略 (3)由(1)得,当x=2 时 所以当边长为一m时,长方形面积最大,最大面积为一 Ⅲ.课堂练习 1.随堂练习 2.补充练习 确定下列抛物线的开口方向、对称轴与顶点坐标 39 (1)y=-x2+x+- (2)y=-x2 66 解:(1)y=-x2+=x 3 3nx161616 48 开口方向向下,对称轴为x3顶点坐标为(,) (x2-x-30) 解压密码联系qq119139686加徹信公众号 Jaoxuewuyou九折优惠!淘 宝网址: JIaoxue5 u taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 投影片:(§2.4.2 C) 如右图,一边靠校园院墙,另外三 边用 50 m 长的篱笆,围起一个长 方形场地,设垂直院墙的边长为 xm. (1)写出长方形场地面积 y(m2 )与 x 的函数关系式; (2)画出函数的图象; (3)求边长为多少时,长方形面积最大,最大是多少? 解:(1)垂直院墙的边长为 x m,另一边长为(50-2x)m.则 y=x(50-2x)=-2x2 +50x=-2(x- 2 25 ) 2 + 2 625 . (2)图象略. (3)由(1)得,当 x= 2 25 时,y 最大= 2 625 . 所以当边长为 2 25 m 时,长方形面积最大,最大面积为 2 625 m 2. Ⅲ.课堂练习 1.随堂练习 2.补充练习 确定下列抛物线的开口方向、对称轴与顶点坐标. (1)y=-x 2 + 16 9 2 3 x + ; (2)y= 6 1 x 2 - 5. 6 1 x − 解:(1)y=-x 2 + 16 9 2 3 x − =-(x2 - 16 9 2 3 x − ) =-( x2 - 16 9 16 9 16 9 2 3 x + − − ) =-(x- 4 3 ) 2 + 8 9 . 开口方向向下,对称轴为 x= 4 3 ,顶点坐标为( 4 3 , 8 9 ). (2)y= 6 1 x 2 - 5. 6 1 x − = 6 1 (x2 -x-30)