当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_141103

资源类别:文库,文档格式:PDF,文档页数:36,文件大小:477.51KB,团购合买
点击下载完整版文档(PDF)

ME369 Modeling,Analysis and System Control-A --Lecture 141103 Week 8# Routh Criterion Ch5.7 Nov.3(M) HW3 due Steady State Error Ch5.8 Practical lecture 1-control Nov.5(W) system modeling Quiz 2 Week 9# Nov.10(M) Frequency-Introduction,Response Ch7.1 HW4 due Now.12(W)) Frequency-Nyquist Plot Ch7.3 HW5

ME369 Modeling, Analysis and System Control-A --Lecture_141103 Week 8# Nov.3(M) Routh Criterion Steady State Error Ch5.7 Ch5.8 HW3 due Nov.5(W) Practical lecture 1 – control system modeling Quiz 2 Week 9# Nov.10(M) Frequency-Introduction, Response Ch7.1 Nov.12(W) Frequency-Nyquist Plot Ch7.3 HW4 due HW5

Routh Array a(s)=a,s6+a5s5+…+as+a0=0 06 ao a 43 a 0 S 4 aa4-a6凸 二A asaasa=B 0 as as as Aa3- BasC Aaaoas=D A0-0a=0 0 A A A 2 CB-AD =E Cao-40 S 二do 0 0 C ED E0-C0 S -Cao=F =0 0 0 E F Fao F0-E0 0 0 0 F F The number of sign changes of the first column elements of the Routh Array is equal to the number of unstable roots

Routh Array s 6 a 6 a 4 a2 a 0 s 5 a 5 a 3 a1 0 s 4 a 5 a 4  a 6 a 3 a 5  A a 5 a2  a 6 a1 a 5  B a 5 a 0  a 6 0 a 5  a 0 0 s 3 Aa 3  Ba 5 A  C Aa1  a 0 a 5 A  D A 0  0 a 5 A  0 0 s 2 CB  AD C  E Ca 0  A 0 C  a 0 0 0 s ED  Ca 0 E  F E 0  C 0 F  0 00 s 0 Fa 0  E 0 F  a 0 F 0  E 0 F  0 00 The number of sign changes of the first column elements of the Routh Array is equal to the number of unstable roots. a ( s )  a 6 s 6  a 5 s 5    a 1 s  a 0  0

Example--Verification (s-1)2(s+2)(s+3)=s4+3s3-3s2-7s+6 1 -3 6 3 -7 0 -2 6 3 0 S 20 0 S 6 Examine 1st column,of sign changes= 日96

Example--Verification ( s  1) 2 ( s  2)( s  3)  s 4  3 s 3  3 s 2  7 s  6 4 3 2 0 1 36 3 70 s s s s s   2 3  6 20 0 6 0 Examine 1st column, # of sign changes=

Example 10-5,Ogata,pp.541 For 3d-order polynomial: a0s3+a1s2+a2s+a3=0 The array of coefficients becomes s ao 02 a 03 a az -aoa3 0 1 s° a 0 Stable condition: Enough? a az aa;

Example 10-5, Ogata, pp.541 3 0 1 2 2 1 3 a 0 s  a s  a s  a  For 3rd-order polynomial: 0 0 3 0 1 1 1 2 0 3 1 3 2 0 2 3 s a a a a a a s s a a s a a  The array of coefficients becomes Stable condition: 1 2 0 3 a a  a a Enough?

Example--Verification (s2+1)(s+2)(s+3)=6s4+6s3+6s2+6s+5 665 6 6 5 S 5O Examine 1st column,of sign changes= 6

Example--Verification 2 432 ( 1)( 2)( 3) 6 6 6 6 5 s s s ssss       4 3 2 0 665 660 s s s s s 0 5 Examine 1st column, # of sign changes=

Special Case 1 When one of the terms in the first column is zero, that indicates there may be pole(s)on RHP. ·These“zero”can be replaced by a small positive number“e”and continue the process. See the two examples in Ogata,pp.542

Special Case 1 • When one of the terms in the first column is zero, that indicates there may be pole(s) on RHP. • These “zero” can be replaced by a small positive number “” and continue the process. See the two examples in Ogata, pp.542

Example--Verification (s2+1)(s+2)(s+3)=6s4+6s3+6s2+6s+5 6 65 6 6 E 5 30 S E 5 5 Examine 1st column,of sign changes= 6

Example--Verification 2 432 ( 1)( 2)( 3) 6 6 6 6 5 s s s ssss       4 3 2 0 665 660 5 s s s s s  30 6   5 Examine 1st column, # of sign changes=

Examples,Ogata,pp.278 s3+2s2+s+2=(s2+1)(s+2)=0 s3 1 s4+2s3+3s2+6s+1=0 s2 2 2 s 0 0 A pair of imaginary roots 2 s3-3s+2=(s-1)2(s+2)=0 1 -3 s2 0≈8 2 -3 2 0 →One sign change → 2 One sign change

2 0 0 0 2 2 1 1 0 1 2 3 s s s s      32 2 s ss s s       2 2 1 20 Examples, Ogata, pp.278 2 0 0 2 3 0 2 1 3 0 1 2 3 s s s s       A pair of imaginary roots One sign change One sign change 2 3 6 1 0 4 3 2 s  s  s  s   3 2 ss s s      3 2 ( 1) ( 2) 0

Special Case 2 If all the coefficients in any row become all zero, that indicate poles in mirror image with respect to the origin. The evaluation can be continued by forming an auxiliary polynomial,by taking the coefficients of the last non-zero row. The all-zero row is then replaced by the coefficients of the derivative of the auxiliary polynomial

Special Case 2 • If all the coefficients in any row become all zero, that indicate poles in mirror image with respect to the origin. • The evaluation can be continued by forming an auxiliary polynomial, by taking the coefficients of the last non-zero row. • The all-zero row is then replaced by the coefficients of the derivative of the auxiliary polynomial

Example,Ogata,pp.279 s5+2s4+24s3+48s2-255-50=0 1 24-25 (6+10s-1s+j5s-j5g+2)=0 2 48-50 →P(s)=2s4+48s2-50 53 ,0 0 0 1 24 -25 2 48 -50 Coefficients of the 8 96 derivative of P(s) 24 -50 One root with 112.7 0 positive real part 50 -50

Example, Ogata, pp.279 2 24 48 25 50 0 5 4 3 2 s  s  s  s  s   0 0 0 2 48 50 1 24 25 3 4 5 s s s     2 48 50 4 2 P s  s  s  50 112.7 0 24 50 8 96 2 48 50 1 24 25 0 1 2 3 4 5     s s s s s s Coefficients of the derivative of P(s) One root with positive real part  s  1   s  1   s  j 5   s  j 5   s  2   0

点击下载完整版文档(PDF)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
共36页,可试读12页,点击继续阅读 ↓↓
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有