当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_140922

资源类别:文库,文档格式:PDF,文档页数:36,文件大小:279.62KB,团购合买
点击下载完整版文档(PDF)

ME369 Modeling,Analysis and System Control-A --Lecture 140922 Week 2# Laplace Transform-inverse, Ch2.4, Sep.22(M) solving equation,MATLAB 2.5(4h) Dynamic systems-mechanical Ch3.1~ HW1 due Sep.24(W) electrical system modeling 3.3 HW2 Week 3#Rest Week 4# 0ct.6M)) Rest Dynamic systems- Ch3.1~ Oct.8(W) mechanical/electrical system 3.3 modeling

ME369 Modeling, Analysis and System Control-A --Lecture_140922 Week 2# Sep.22(M) Laplace Transform – inverse, solving equation, MATLAB Ch2.4, 2.5 (4th ) Sep.24(W) Dynamic systems – mechanical / electrical system modeling Ch3.1 ~ 3.3 HW1 due HW2 Week 3# Rest Week 4# Oct.6(M) Rest Oct.8(W) Dynamic systems – mechanical/electrical system modeling Ch3.1 ~ 3.3

Definition of Laplace Transform Definition of Laplace Transform The Laplace Transform of f(t)is defined as F(s)=f(t)e-dt=[f() S=0+j0 Function ft)that satisfies 1.A time continuous function; 2.Real function; 3.t)=0,for0: 4 0f(t)eh<w→limf()e=0

• Definition of Laplace Transform • The Laplace Transform of f(t) is defined as 0 ( ) ( ) [ ( )] st F s f t e dt f t      L lim ( ) 0 st t f te    0 ( ) st f t e dt      Definition of Laplace Transform s    j Function f(t) that satisfies 1. A time continuous function; 2. Real function; 3. f(t)=0, for t<0; 4

Laplace Transform of Typical Function Exponential Function f(t)=0 fort<0 F(S)=? f(t)=Ae-a for t≥0 [f(t)=0 for t<0 Step Function F(S)=? f(t)=A for t≥0 f(t)=0 fort<0 Ramp Function F(S)=? f(t)=At for t≥0

Laplace Transform of Typical Function Exponential Function         ( ) for 0 ( ) 0 for 0 f t Ae t f t t t Step Function        ( ) for 0 ( ) 0 for 0 f t A t f t t Ramp Function        ( ) for 0 ( ) 0 for 0 f t At t f t t F s() ?  F s() ?  F s() ? 

Laplace Transform of Typical Function Sinusoidal Function f(t)=0 fortto Impulse Function ()=lim for0 F(S)=? i0→0t0 6(t-to)=0fort≠to δ(t-to)=∞fort=to F(s)=? Unit Impulse Function [6(t-to)dt =1 Table A.1,by Ogata

Laplace Transform of Typical Function Impulse Function Unit Impulse Function             0 0 0 0 ( ) lim for 0 ( ) 0 for 0 and t t 0 t t t A f t f t t t                    ( ) 1 ( ) for t t ( ) 0 for t 0 0 0 0 0 t t dt t t t t t    F s() ?  F s() ?         ( ) sin for 0 ( ) 0 for 0 f t A t t f t t  Sinusoidal Function F s() ?  Table A.1, by Ogata

Important properties of the Laplace Transform(1) 1.Multiplication of f(t)by e-at LeSe"f()e"d=F(+a) Translated Function (time delay) L[f(t-a).1(t-a)=eaF(s)

Important properties of the Laplace Transform(1)   ( ) ( ) (  )           L e f t e f t e dt F s t t st 0 1.Multiplication of f(t) by e-αt Translated Function (time delay)  ( ) 1( ) ( )  as L ft a t a e Fs   

Important properties of the Laplace Transform(2) (2) LT is Linear (3) Differentiation If the derivative of f(x)exists then \离=foef+eh =sF(S)-f(0) 9到=心离0=0-0 (ddread 小蛋0o-0r7-70

Important properties of the Laplace Transform(2) (2) LT is Linear (3) Differentiation ( ) ( ) ( 0 ) ( 0 ) ... ( 0 ) 1 1 2               n n n n n n f t s F s s f s f f dt d L  If the derivative of f(x) exists then   0 0 0 2 2 2 0 00 0 0 0 ( ) () () ( ) (0) ( ) (0) ( ) (0) (0) 1 1 ( ) ( ) ( ) () st st st tt t st st st df t df e dt f t e s f t e dt dt dt sF s f d f t df s f s F s sf f dt dt F f d f d e dt f d e f t e dt s s                                                   L L L L ( )s s

Important properties of the Laplace Transform(3) (4)Integration Theorem ff0a/'o S row-jinolo -S dt -dfe() S S

Important properties of the Laplace Transform(3) (4) Integration Theorem   s f s F s L f t dt ( ) ( ) ( ) 0  1   =   dt s e f t s e f t dt st st          0 0 L   f t dt f t dt e dt = ( ) ( ) st     0 ( ) = ( )       0 0 ( ) 1 ( ) 1 f t e dt s f t dt s st t = s F s s f ( 0 ) ( ) 1   =

Important properties of the Laplace Transform(3) Integration Theorem rmalF+'@ Integral factor -d]小-+f八o+0+o) Differentiation Theorem t0=a-0, Derivative factor ]=7s70-f0-70

Important properties of the Laplace Transform(3) Integration Theorem   s f s F s L f t dt ( ) ( ) ( ) 0  1   = ( ) ( ) (0) df t L sF s f dt         Differentiation Theorem Integral factor Derivative factor ( ) ( ) ( 0 ) ( 0 ) ... ( 0 ) 1 1 2               n n n n n n f t s F s s f s f f dt d L 

Important properties of the Laplace Transform(5) (5)Initial Value Theorem → lim f(t)=lim[sF(s)] t→0 S→00 lime-"dt=lim[-f(0)+sF(s)] dt S-> → 0=lim[-f(0)+sF(s)] S→00 Ex:Find the initial value of f(t)when Laplace Transform of f(t)is given by: 25+1 F(S)=L[f(t)]= s2+s+1

Important properties of the Laplace Transform (5) (5) Initial Value Theorem 0 lim lim[ () () 0 ] s s df st e dt f sF s dt          0 lim[ (0) ( )] s f sF s       0 lim ( ) lim[ ( )] t s f t sF s    Ex: Find the initial value of f(t) when Laplace Transform of f(t) is given by: 1 2 1 ( ) [ ( )] 2      s s s F s L f t

Important properties of the Laplace Transform (5)Initial Value Theorem → lim f(t)=lim[sF(s)] t->0 (6)Final Value Theorem → limf(t)=limsF(s)] s->0

Important properties of the Laplace Transform (6) Final Value Theorem  0 lim ( ) lim[ ( )] t s f t sF s    (5) Initial Value Theorem  0 lim ( ) lim[ ( )] t s f t sF s   

点击下载完整版文档(PDF)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
共36页,可试读12页,点击继续阅读 ↓↓
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有