Chapter 7: Transmission Line 87-1 Transmission Line: Some history 37-2 Chain Network and Transmission Line(conceptions) ( Principles of Circuit Analysis) 37-3 Uniform Lossless Transmission Line(key points) Chapter uniform lossless transmission line natural impedance, trar The natural parameter of (Chain Network and Transmission Line) incident wave, reflected wave, tanee Lecture 2 he wave properties of terminal: open, short, matchi transmission line 2009.12.03 7- step response of transmission line "Microave Engineering", Thin Edition David M. Pozar C1-1: Introduction to Linear Circuit Analysise Cl-1: Introduction to Linear Circuit Analysis Analysis of nie signals: Circuit Analysis, Electromagnetic Field Theory Analysis of electronic signals Cireuit Analysis, Electromagnetic Field Theory when l&L~λ,andLl&1-1 e wanI 1o Law frequency long wavelength) Distributed constant circuit Condition It dL <<A E.2)8HL2 Chain cireuit - Transmission Line -Uniform transmission tian Chain cireuit Transmission Line -Uniform transmission line dL<<2 I(z)RAZ LAZ I(z+△z) Laplace Transform:ja→S v(z) KVLI V(z-V(z+AZ)=(RAZ+JOLAZI(z) KcL:I(z)-I(z+△z)=(G△z+ joCAz)V(z+△z) v(z)-v(z+△z) (R+joL)I(z) v(z) G△cAV(x+Ax I(z)-I(z+△z) △→0 (G+jaC)V(z+Az) Let RG. LC to be the parameters of unit length
北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 第 ?讲: 复习 北京大学 北京大学 《Principles of Circuit Analysis》 Chapter 7: Uniform Lossless Transmission Line (Chain Network and Transmission Line) Lecture 2 2009.12.03 Interest Focus Persistence Originality 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 §7-1 Transmission Line: Some history §7-2 Chain Network and Transmission Line (conceptions) §7-3 Uniform Lossless Transmission Line (key points) natural impedance, transmission constant incident wave, reflected wave, reflectance terminal: open, short, matching §7-4 step response of transmission line The natural parameter of transmission line The wave properties of transmission line Reference: “Microwave Engineering”,Third Edition David M.Pozar (chapter 2 and 3) Reference: “Microwave Engineering”,Third Edition David M.Pozar (chapter 2 and 3) Chapter 7: Transmission Line 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 E(t, z)&H(t, z) A B C C’ Analysis of electronic signals: when L λ & L ~ λ , and L λ & L ~ λ , We want to use the circuit analysis ? conditions ? Condition 1:dL << λ C1-1:Introduction to Linear Circuit Analysis Analysis of electronic signals: Circuit Analysis, Electromagnetic Field Theory 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Z ΔZ Z Z+ΔZ dL << dL << λλ *** RΔz LΔz GΔz CΔz + V(z+Δz) - + V(z) - I(z) I(z+Δz) Chain circuit → Transmission Line →Uniform transmission line Let R,G,L,C to be the parameters of unit length When R,G,L,C are constants (independent on Z): Uniform transmission line When R=0,G=0: lossless transmission line Ppt2810.tmp 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 KVL: KCL: V(z) - V(z + Δz) = (RΔz + jωLΔz)I(z) I(z) - I(z + Δz) = (GΔz + jωCΔz)V(z + Δz) RΔz LΔz GΔz CΔz + V(z+Δz) - + V(z) - I(z) I(z+Δz) (R j L)I(z) z V(z) - V(z z) = + ω Δ + Δ (G j C)V(z z) z I(z) - I(z z) = + + Δ Δ + Δ ω Complex method Δ Æ0 Laplace Transform: jωÆS Chain circuit → Transmission Line →Uniform transmission line
Chain cireuit→ Transmission Line→ Uniform transmission轴 neident wave V(z=V e I(z)=I'et +kz +⊥e k2v(z)=0 Definition I: transfer constant j cos(t)→elot GB 2 k2I(z)=0 ne wave (R\joL)(G+joc) vtei(at阝z) v-e*hz I(z)Ie" +I X② V'ej(t-p2exot42) of wave motion At>0→Az>0 Reflected wave Decision of incident wave and reflected wave ilok V(z)=V*ef-kz+v-e* v(z)=Ve" +V I (z)=I 6-k+I I(z) *I'e*kz cos(ot)→e a component represents the wave which transmits to anti-z y-ej(ot+p 2) e-k component represents the wave which transmits to Z direction V(x)=Ve"tVe Atv-ej(ot+B 2)ei(eat+p Az) I(x=Ie/+I'e At>0→△z<0 代艺 Decision of incident wave and reflected wave lk Definition 1: transfer constant =a+jB V(z)=Ve+v (z=Ie"+I"e reflected wave zLabsorptirehected wave Uniform lossless transmission line: R-G=0. St k=jB=jo√Lc ncident way Transmissive reflected wa v(t)① which transmits to anti-Z direction reflected wavel eli component represents the wave Longitudin transmission characteristic of - which transmits to Z direction (it is only relate to dielectrie material and structure)
北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 k I(z) 0 dz d I(z) k V(z) 0 dz d V(z) 2 2 2 2 2 2 − = − = (R j L)(G j C) k α jβ = + ω + ω = + Definition 1: transfer constant kz kz 1e e − + 2 solution( ) solution( ) K ,K *** (G j C)V(z) dz dI(z) (R j L)I(z) dz dV(z) ω ω − = + − = + -kZ kZ -kZ kZ I(z) I e I e V(z) V e V e + − + + − + = + = + Z incident wave reflected wave Z attenuation constant Chain circuit → Transmission Line →Uniform transmission line 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 z kz kz kz kz I(z) I e I e V(z) V e V e + − − + + − − + = + = + k = jβ jβ z V e + − j( t-β z) V e + ω Δz, Δt j( t-β z) j( t-β z) V e e + ω ωΔ Δ z Direction of wave motion Δt > 0 → Δz > 0 Incident wave t jω t cos( ω t) → e sine wave t+Δt t *** =0 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 z kz kz kz kz I(z) I e I e V(z) V e V e + − − + + − − + = + = + t jω t cos( ω t) → e jβ z V e − j( t β z) V e − ω + z Δz, Δt − + Δ+ Δ j( t ω ω β z) j( t β z) Ve e Δt > 0 → Δz < 0 Reflected wave k = jβ *** t+Δt t Transmission direction of wave =0 propagation coefficient phase constant 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Vs + - ZL Decision of incident wave and reflected wave -kZ kZ -kZ kZ I(z) I e I e V(z) V e V e + − + + − + = + = + Z incident wave reflected wave Vs + - ZL kx kx kx kx I(x) I e I e V(x) V e V e + + − − + + − − = + = + X incident wave reflected wave e+kz component represents the wave which transmits to anti-Z direction e-kz component represents the wave which transmits to Z direction *** 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 *** ZL x incident wave reflected wave absorption x incident wave reflected wave Transmissive wave k ZC k ZC x incident wave reflected wave Transmissive wave k ZC k ZC x incident wave? reflected wave? V(t)+ - Decision of incident wave and reflected wave e+kz component represents the wave which transmits to anti-Z direction e-kz component represents the wave which transmits to Z direction 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Longitudinal direction – transmission characteristic of electromagnetic waves: transfer constant (it is only relate to dielectric material and structure) Z Definition 1: transfer constant (R j L)(G j C) k α jβ = + ω + ω = + k = jβ = jω LC Uniform lossless transmission line:R=G=0, So: *** -kZ kZ -kZ kZ I(z) I e I e V(z) V e V e + − + + − + = + = +
1: transfer constant chain circuit Transmission Line -uniform transmission line (R+joL)(G+joc) I(2)-I'e*+I-e The unit length of wave length -- 2 Uniform lossless transmission line: R=G=0. So k=jB=jo√Lc Longitudinal direction-transmission characteristic of ectromagnetie waves: transfer constant so=-=A finition of wavelength: A=2r In Uniform lossless transmission line (z+NA)=(2)I(2+N)=(2) is transmits on the transmissi Assuming there is only unidirectionally transmitted wave Chain cireuit transmission Line -Uniform transmission lin x2=(a+a)xa)V(z)=ve故 I(z) (G+jeC)V(z)I(z)=I'e Transverse- blocking characteristic of electromagnetie Definition 2: natural impedan (z)=Ve R+joL material and structure Z x1°ze*tcVG+joC uce the transmission line is reciprocal V(z=Ve Original parameter I(z)=了 IfR, G, L, C are the parameters of Unit length E(Determined by the medium materials and structure) Chain cireuit Transmission Line -Uniform transmission line Chain cireuit→ Transmission Line→ Uniform transmission最 kl k, Ze v(z)=ves+ v-e(ki )= I v,=V(O)=V'+V- V2=V(I)=Ve*+V-e** chkl -Zcshkl(V I1=I(0) I2=I()=y。“V Zc ski chkl八工 v=-(1+zI1) In which: shkl=(e-e")/2 V=-(V,-ZI chkl=(e+e")/2
北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 (R j L)(G j C) k α jβ = + ω + ω = + k = jβ = jω LC *** -kZ kZ -kZ kZ I(z) I e I e V(z) V e V e + − + + − + = + = + Wavelength: The unit length of wave which is transmits on the transmission line. β π λ 2 definition of wavelength : = 2 2 let z so z β π π λ β = = = ( ) ( ) ( ) ( ) Uniform lossless transmission line : V Z N V Z I Z N I Z In + λ = + λ = Definition 1: transfer constant Uniform lossless transmission line:R=G=0, So: 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 The unit length of wave --wavelength-- β π λ 2 = chain circuit → Transmission Line →uniform transmission line Longitudinal direction – transmission characteristic of electromagnetic waves: transfer constant (it is relate to dielectric material and structure) 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Assuming there is only unidirectionally transmitted wave Z *** (G j C)V(z) dz dI(z) (R j L)I(z) dz dV(z) ω ω − = + − = + -kZ -kZ I(z) I e V(z) V e + + = = incident wave Definition 2: natural impedance + + = I V ZC -kZ -kZ e Z V I(z) V(z) V e C + + = = substituting then G j C R j L ZC ω ω + + = Since the transmission line is reciprocal… kZ kZ I(z) I e V(z) V e − + − + = = reflected wave So for we have − − = - I V ZC Substituting to the wave equations, we can get: + V(z) - I(z) 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 If R,G,L,C are the parameters of Unit length 北京大学 北京大学 (Determined by the medium materials and structure) Original parameter Secondary parameter Chain circuit → Transmission Line →Uniform transmission line 2 independent variables: Transverse – blocking characteristic of electromagnetic wave: natural impedance Longitudinal – transmission characteristic of electromagnetic wave: transfer constant (it is only relate to dielectric material and structure) 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ =⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ 2 2 1 1 I V I V ? ? ? ? kz - ZC + V1 - + V2 I1 I2 z z 0 z - + V1 - + V2 I1 I2 k, Zc -kZ kZ -kZ kZ e Z V e Z V I(z) V(z) V e V e + + − + − + = − = + C C C ZC V Z V I I(0) V V(0) V V 1 1 + − + − = = − = = + -kl kl 2 -kl kl 2 e Z V e Z V I I(l) V V(l) V e V e + + − + − + = = − = = + C C V (V Z I ) V (V Z I ) 1 1 1 1 C C = − = + − + 2 1 2 1 substituting l kl Chain circuit → Transmission Line →Uniform transmission line 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ =⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ 2 2 1 1 I V I V ? ? ? ? kz - ZC + V1 - + V2 I1 I2 z z 0 z - + V1 - + V2 I1 I2 k, Zc -kZ kZ -kZ kZ e Z V e Z V I(z) V(z) V e V e + + − + − + = − = + C C l kl *** chkl (e e )/2 kl −kl = + shkl (e e )/2 kl −kl In which: = − − ⎛⎞ ⎛⎞ ⎛ ⎞ ⎜⎟ ⎜⎟ = ⎜ ⎟ ⎝⎠ ⎝⎠ ⎝ ⎠ 2 1 C 1 2 1 C V V chkl -Z shkl I I -Z shkl chkl Chain circuit → Transmission Line →Uniform transmission line
Chain cireuit→ Transmission line→ Uniform transmission轴 Tea break/ 1-2) chkx ZcshkxV 7-1,2.5,17 I1八( zc shkx chkx人r2 The derivation is the n which Homework 7-2 chkx=(ex+e-k)/2 Uniform lossless transmission line k=jp*e Uniform lossless transmission line v2= zL工2 shOX Zc V,Z.chkx+Zcshkx +jzctgBx M/2 Change periodically on the transmission line 220=2=2 Uniform lossless transmission line k= jB Uniform lossless transmission line 2图 v(x)=? VO= z-shkx chkx [(z1+z)ev2+(z1-ze-v2/2z I2-(2-z)e-r2]/ =V2/ZL Change periodically on the transmission line se period is
北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ =⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ 2 2 1 1 I V I V ? ? ? ? kx - ZC + V1 - + V2 I1 I2 x x - + V1 - + V2 I1 I2 k, Zc kx kx kx kx e Z V e Z V I(x) V(x) V e V e − − + + + + − − = − = + C C ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ =⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − 2 2 1 C C 1 1 I V Z shkx chkx chkx Z shkx I V chkx (e e )/2 kx −kx = + shkx (e e )/2 kx −kx = − In which: The derivation is the same as before: Homework 7-2 *** x 0 Chain circuit → Transmission Line →Uniform transmission line 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Tea break! Tea break! Homework: 7-1,2,5,17 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 V2 = ZLI2 kx - ZC + V1 - + V2 I1 I2 ZL Zin ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ =⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − 2 2 1 C C 1 1 I V Z shkx chkx chkx Z shkx I V Uniform lossless transmission line k = jβ *** x - + V1 - + V2 I1 I2 k, Zc ZL Zin x 0 L C L C C L C L C C 1 1 in jZ tg x Z Z jZ tg x Z Z shkx Z chkx Z chkx Z shkx Z I V Z + + = + + = = β β Change periodically on the transmission line whose period is a half wavelength 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 e.g.: ZL k ZC x λ/2 Zin Zin (x) (x)=?=? =ZL =ZL - + V2 λ/2 Zin Zin (x) (x)=?=? =ZL =ZL 0 ZL k ZC x λ/2 Zin Zin (x) (x)=?=? =ZL =ZL - + V2 λ/2 Zin Zin (x) (x)=?=? =Z=ZLL /2/2 0 ZL Uniform lossless transmission line 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 V2 = ZLI2 kx - ZC + V1 - + V2 I1 I2 ZL Zin ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ =⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − 2 2 1 C C 1 1 I V Z shkx chkx chkx Z shkx I V k = jβ *** x - + V1 - + V2 I1 I2 k, Zc ZL Zin x 0 2 c j x 2 L c j x 1 L c 2 L j x 2 L c j x 1 L c I [(Z Z )e I (Z -Z )e I ]/2Z V [(Z Z )e V (Z -Z )e V ]/2Z β β β β − − = + − = + + Uniform lossless transmission line Change periodically on the transmission line whose period is one wavelength 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 e.g.: ZL k ZC x λ I(x) =? I(x) =? =V2/ZL =V2/ZL - + V2 λ V(x) =? V(x) =? =V2 =V2 V(x) =? V(x) =? =V2 =V2 Uniform lossless transmission line
Uniform lossless transmission line Uniform lossless transmission line: reflection on the line k Zc incident wav Transmissive vg)=2yx)中2=V2 Transmissive reflected way r(x)=2 V2/ZL v(t) cident aave Decision of incident wave and reflected wave Unifor lossless transmission line: reflectance= reflection/incidence niform lossless transmission line: reflectance reflectien/incidence Definition: voltage reflection coefficient pLOX Current reflection coefficient: v,-[(Z,+z,),+(z-z)e-v,1/2z. I1=[(z1+z)eI-(Z1-z)e-"r2]/2z P (x)===-P,(X reflected wave voltage reflection ( Z p(0)=22po)e p(x)=2-2en-p、(o)e Uniform lossless transmission line: reflectance =reflectionfincidence t-o Uniform lossless transmission line: reflectance=reflection/incidence V1 k, Ze V=[(Z1+z)ev2+(Z-z2)ev2l/2 v=[(21+2ev2+(z-zev/22 I1=[(Z1+2z)eI2-(21-z2)e-"r2l/2z 工=[(z1+2)e-r2-(z-z)e-r2]/2z F[1+p,(x)]v,: [1+p√(o)ev2e I=2*4-[1-P, (xJlelox=2+4-[1-p,()e jleien
北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 e.g.: ZL k ZC x λ I(x) =? I(x) =? =V2/ZL =V2/ZL - + V2 λ V(x) =? V(x) =? =V2 V(x) =? =V2 V(x) =? Zin Zin (x) (x)=?=? =ZL =ZL =V2 =V2 Uniform lossless transmission line 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Uniform lossless transmission line: reflection on the line *** ZL x x k ZC k ZC x k ZC k ZC x V(t)+ - Decision of incident wave and reflected wave Decision of incident wave and reflected wave incident wave reflected wave incident wave reflected wave absorption Transmissive wave incident wave reflected wave Transmissive wave incident wave reflected wave 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Uniform lossless transmission line: reflectance = reflection/incidence *** Current reflection coefficient: ) -I V I V ( Z -ρ (x) I I ρ (x) - - C V - I = = = = + + + Q Definition : voltage reflection coefficient: + − = V V ρV(X) 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 kx - ZC + V1 - + V2 I1 I2 ZL Zin *** x - + V1 - + V2 I1 I2 k, Zc ZL Zin x 0 2 c j x 2 L c j x 1 L c 2 L j x 2 L c j x 1 L c I [(Z Z )e I (Z -Z )e I ]/2Z V [(Z Z )e V (Z -Z )e V ]/2Z β β β β − − = + − = + + φ β β − = = + − = = + L C j V V L C L C -j2x -j2 x V V L C Z Z ρ (0) ρ (0) e Z Z Z Z ρ (X) e ρ (0)e Z Z voltage reflection coefficient: Uniform lossless transmission line: reflectance = reflection/incidence incident wave reflected wave 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 kx - ZC + V1 - + V2 I1 I2 ZL Zin *** x - + V1 - + V2 I1 I2 k, Zc ZL Zin x 0 2 c j x 2 L c j x 1 L c 2 L j x 2 L c j x 1 L c I [(Z Z )e I (Z -Z )e I ]/2Z V [(Z Z )e V (Z -Z )e V ]/2Z β β β β − − = + − = + + β β β β ββ + + + + LC LC j x -j2 x j x 1 V2 V 2 L L LC LC j x -j2 x j x 1 V2 V 2 c c ZZ ZZ V = [1+ρ (x)]V e = [1+ρ (0)e ]V e 2Z 2Z ZZ ZZ I = [1-ρ (x)]I e = [1-ρ (0)e ]I e 2Z 2Z Uniform lossless transmission line: reflectance = reflection/incidence 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 kx - ZC + V1 - + V2 I1 I2 ZL Zin *** x - + V1 - + V2 I1 I2 k, Zc ZL Zin x 0 2 c j x 2 L c j x 1 L c 2 L j x 2 L c j x 1 L c I [(Z Z )e I (Z -Z )e I ]/2Z V [(Z Z )e V (Z -Z )e V ]/2Z β β β β − − = + − = + + v v β β β β ρ ρ + = = + + = 1 L C in C 1L C -j2 x C -j2 x V Z jZ tg x Z Z I jZ tg x Z 1 (0)e Z 1- (0)e Uniform lossless transmission line: reflectance = reflection/incidence
Chain cireuit Transmission Line -Uniform trans Definition of warelength: A v(z)=ve*+v-e*kat lp(x)=3-2sg am=(Ole+e(O)e 8aa HI(z)=V. The velocity of wave =V(R+joL)(G+joc) =[1+p(x)em [1+P(O)e2p]velox in transmission line: Definition 2: natural imped R+JOL 工1=2+21-p(x)em=221-p(o)e1em B=2 G+joC Uniform lossless transmission line: reflection on the ling um Uniform lossless transmission line jB lected wave z absorption cident way V=Z I2 (t) incident gave in z shox eflected wave reflected wave r( z-shkx chkx人x2 Voltage/current reflection coefficient Zshkx +Z chkx jz,tgB P, (x)=relected wave=-P, (x incident wave Zin changes along the transmission line by half wavelength. V and I change along the transmission line by one w
北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 kx - ZC + V1 - + V2 I1 I2 ZL Zin *** x - + V1 - + V2 I1 I2 k, Zc ZL Zin x 0 β β β β ββ + + + + LC LC j x -j2 x j x 1 V2 V 2 L L LC LC j x -j2 x j x 1 V2 V 2 c c ZZ ZZ V = [1+ρ (x)]V e = [1+ρ (0)e ]V e 2Z 2Z ZZ ZZ I = [1-ρ (x)]I e = [1-ρ (0)e ]I e 2Z 2Z φ β β − = = + − = = + L C j V V L C L C -j2x -j2 x V V L C Z Z ρ (0) ρ (0) e Z Z Z Z ρ (X) e ρ (0)e Z Z v v β β β β ρ ρ + = = + + = 1 L C in C 1L C -j2 x C -j2 x V Z jZ tg x Z Z I jZ tg x Z 1 (0)e Z 1- (0)e Uniform lossless transmission line: reflectance = reflection/incidence 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Z Assuming R,G,L,C are the parameters of unit length *** -kZ kZ -kZ kZ e Z V e Z V I(z) V(z) V e V e + + − + − + = − = + C C (R j L)(G j C) k α jβ = + ω + ω = + attenuation constant Phase constant 2 Definition of wavelength : π λ β = Summary 1 v ω β = = LC The velocity of wave in transmission line: Chain circuit → Transmission Line →Uniform transmission line Wavelength: The unit length of wave which is transmits on the transmission line. Definition 1: transfer constant G j C R j L - I V I V ZC ω ω + + = = = − − + + Definition 2: natural impedance 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Uniform lossless transmission line: reflection on the line *** ZL x x k ZC k ZC x k ZC k ZC x V(t)+ - incident wave reflected wave incident wave reflected wave absorption Transmissive wave incident wave reflected wave Transmissive wave incident wave reflected wave Voltage/current reflection coefficient: reflected wave incident wave ρV I (x) = =−ρ (x) Summary 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 V2 = ZLI2 kx - ZC + V1 - + V2 I1 I2 ZL Zin ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ =⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − 2 2 1 C C 1 1 I V Z shkx chkx chkx Z shkx I V *** k = jβ Uniform lossless transmission line x - + V1 - + V2 I1 I2 k, Zc ZL Zin x 0 L C L C C L C L C C 1 1 in jZ tg x Z Z jZ tg x Z Z shkx Z chkx Z chkx Z shkx Z I V Z + + = + + = = β β Zin changes along the transmission line by half wavelength. V and I change along the transmission line by one wavelength Summary