Chapte r 1 Introductory Linear Circuit Analysis ---From time-domain analysis to frequency-domain analysis Cl-I: Introduction to Linear Circuit Analysis CI-2t Common circuit elements and Their Constraint 认真孰音新 《 Principles of Circuit Analysis》 C1-3: Equivalent of the Linear Network with Two Terminals(One-port Network) E Chapter 1: Introductory Linear Cireuit Analysis E C1-4: Time-domain analysis of Linear and Time- invariant Networks Analysis of First Order Circuit Lecture 1 Cl-5: Analysis of Sine Steadv-state Cireuit (Complex Solut 2009.0915 C1-6: RC Filter http:/nWww.jpkpku.edu.cn/pkujpk/courselditxyl/ http:/lcourse.pkuedu.cn/ Chapter l Introductory Linear Circuit Analysis -From time-domain analysis to frequency-domain analysis Cl-1: Introduction to Linear Cireuit Analysis Cl-1: Introduction to Linear Circuit Analysis PLumped Parameter Hypothesis, Basic Approaches, pLumped Parameter Hypothesis, Basic Approaches, Basic parameters Basic Parameters Basic Terminology, Reference direction, Basic Terminology, Reference direction, Fundamental Law(KVL, KCL, VCR) Fundamental Law(KVL, KCL, VCR) Cl-1: Introduction to Linear Circuit Analysis C1-1: Introduction to Linear Circuit Analysis Research on the electric signals: umped Parameter Hypothe ELectrical Science --Generation, transmIssion, When the physical object has dimensions that are much smaller than the avelength of electronic signals, that is L<<i. or 100L $2, distribution and usage of Electrical Power JElectronics-Generation, transmission, processing, ectric fields is concentrated in capacitance, magnetic fie tance and loss is concentrated in resistance. The wires for connection are usage of Electronic signals considered lossless. The electronic signal analysis from the ports of the elements, such ectromagnetic field theory without regard to the electromagnetism inside the elements. ■ Circuit Analysis The dist Circuit Analysis is we only consider the outer characteristics Ck of the elements
第 ?讲: 复习 《Principles of Circuit Analysis》 Chapter 1: Introductory Linear Circuit Analysis Lecture 1 2009.09.15 http://www.jpk.pku.edu.cn/pkujpk/course/dlfxyl/ http://course.pku.edu.cn/ 兴趣 认真 执著 创新 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Chapter 1 Introductory Linear Circuit Analysis ----From time-domain analysis to frequency-domain analysis C1-1:Introduction to Linear Circuit Analysis C1-2:Common circuit elements and Their Constraint Equations C1-3:Equivalent of the Linear Network with Two Terminals (One-port Network) C1-4:Time-domain analysis of Linear and Timeinvariant Networks (Analysis of First Order Circuit ) C1-5:Analysis of Sine Steady-state Circuit (Complex Solution to Linear and Time-invariant Circuits) C1-6:RC Filter 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Chapter 1 Introductory Linear Circuit Analysis ----From time-domain analysis to frequency-domain analysis C1-1:Introduction to Linear Circuit Analysis Lumped Parameter Hypothesis, Basic Approaches, Basic Parameters, Basic Terminology, Reference direction, Fundamental Law (KVL, KCL, VCR) 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Chapter 1 Introductory Linear Circuit Analysis ----From time-domain analysis to frequency-domain analysis C1-1:Introduction to Linear Circuit Analysis Lumped Parameter Hypothesis, Basic Approaches, Basic Parameters, Basic Terminology, Reference direction, Fundamental Law (KVL, KCL, VCR) 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 C1-1:Introduction to Linear Circuit Analysis Research on the electric signals: Electrical Science -- Generation, transmission, distribution and usage of Electrical Power Electronics -- Generation, transmission, processing, usage of Electronic signals The electronic signal analysis : Electromagnetic field theory Circuit Analysis 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Lumped Parameter Hypothesis : When the physical object has dimensions that are much smaller than the wavelength of electronic signals, that is L << λ or 100L ≤ λ, we can assume that all the characters and parameters can be concentrated into one point. It means that electric fields is concentrated in capacitance, magnetic field is concentrated in inductance and loss is concentrated in resistance. The wires for connection are considered lossless. The essence of Circuit Analysis is that we only consider the outer characteristics from the ports of the elements, such as voltage, electric current and power, without regard to the electromagnetism inside the elements. R L C *** C1-1:Introduction to Linear Circuit Analysis modeling equivalent The distinguishing feature of Circuit Analysis is we only consider the outer characteristics of the elements
Chapter 1 Introductory Linear Circuit Analysis *k Cl-2: Common circuit elements and Their Constraint Equation -From time-domain analysis to frequency-domain analysis Cl-1t Introduction to Linear Circuit Analysis voltage regulator PLumped Parameter Hypothesis, Basic Approaches Basic parameters Basic Terminology, Reference direction, βLb Fundamental Law (KVL, KCL, VCR) Three Basic Approaches equations, diagram, and equivalent e -From time-domain analysis to frequency-domain analysis Cl-1: Introduction to Linear Cireuit anaysis Cl-1: Introduction to Linear Circuit Analysis pLumped Parameter Hypothesis, Basic Approaches, R VERL Basic parameters W=V dP/dt de/dt Basic Terminology, Reference direction, O=CV 于LI Fundamental Law(KV, KCL, VCR) Basic parameters: R, C, L Basic parameters: R, C, L Magnetic Flux Y, Stored Energy w) ity Q Basic variables: V,I,P(Electric Quar Basic variables: V, I, P(Electric Quantity Q Magnetic Flux中、 Stored Energy w) Chapter 1 Introductory Linear Circuit Analysis Cl-1: Introduction to Linear Circuit Analysis -o--From time-domain analysis to frequency-domain analysis Cl-1: Introduction to Linear Circuit An R VER PLumped Parameter Hypothesis, Basic Approaches, dpdt de/dt Basic Parameters Basic Terminology, Reference direction, Chua. Leon o: Memristor Fundamental Law(KVL, KCL, VCR) Basi EEE Trans Circuir Theory 18 307-319(97 ty Q Basic Terminology: circuit, network, node, branch, loop, terminal and Magnetic Flux P, Stored Energy W)
北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 C1-2:Common circuit elements and Their Constraint Equations Examples: Vw Rr voltage regulator tube Ib Ri hVce -βIb Ro e b c e b c e triode 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Three Basic Approaches: equations, diagram, and equivalent *** C1-1:Introduction to Linear Circuit Analysis Lumped Parameter Hypothesis, Basic Approaches, Basic Parameters, Basic Terminology, Reference direction, Fundamental Law (KVL, KCL, VCR) Chapter 1 Introductory Linear Circuit Analysis ----From time-domain analysis to frequency-domain analysis 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Basic parameters :R, C, L Basic variables:V, I, P (Electric Quantity Q、 Magnetic Flux Ψ、 Stored Energy W) C1-1:Introduction to Linear Circuit Analysis Lumped Parameter Hypothesis, Basic Approaches, Basic Parameters, Basic Terminology, Reference direction, Fundamental Law (KVL, KCL, VCR) Chapter 1 Introductory Linear Circuit Analysis ----From time-domain analysis to frequency-domain analysis 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 C1-1:Introduction to Linear Circuit Analysis Q Ψ V R V=RI I ? C Q=CV L Ψ=LI dΨ/dt dQ/dt W=VQ /2 W=IΨ/2 P=VI Basic parameters :R, C, L Basic variables:V, I, P (Electric Quantity Q、 Magnetic Flux Ψ、 Stored Energy W) 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 C1-1:Introduction to Linear Circuit Analysis Q Ψ V R V=RI I ? C Q=CV L Ψ=LI dΨ/dt dQ/dt W=VQ /2 W=IΨ/2 P=VI m Basic parameters :R, C, L Basic variables:V, I, P (Electric Quantity Q、 Magnetic Flux Ψ、 Stored Energy W) Chua, Leon O Chua, Leon O : Memristor Memristor (Memristor = memory resistor) = memory resistor) “Memristor - the missing circuit element the missing circuit element” IEEE Trans. Circuit Theory 18,507-519(1971) 519(1971) 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Basic Terminology: circuit, network, node, branch, loop, terminal and port… C1-1:Introduction to Linear Circuit Analysis Lumped Parameter Hypothesis, Basic Approaches, Basic Parameters, Basic Terminology, Reference direction, Fundamental Law (KVL, KCL, VCR) Chapter 1 Introductory Linear Circuit Analysis ----From time-domain analysis to frequency-domain analysis
Chapter 1 Introductory Linear Circuit Analy Chapter 1 Introductory Linear Circuit Analysis *k ----From time-domain analysis to frequency-domain analysis -From time-domain analysis to frequency-domain analysis Cl-1: Introduction to Linear Circuit Analysis =1A. V=5V Consistent reference direction (related reference direction) CLumped Parameter Hypothesis, Basic Approaches, v(t) v(t) Basic parameters V=5v=-5V Basic Terminology, Reference direction P=V>0? Dissipative element 0: the actual direction follows the reference y(t (related reference direction) If result<0: the actual direction opposites the reference Chapter l Introductory Linear Circuit Analysis Tea break/ Cl-I: Introduction to Linear Circuit Analysi pLumped Parameter Hypothesis, Basic Approaches, Basic parameters Basic Terminology, Reference direction, Fundamental Law(KVL, KCL, VCR) Fundamental Law (KVL, KCL, VCr) Fundamental Law(KVL, KCL, VCR) Law of Conservation of Charge(Gauss's Law)dJg/s=0 Another description: Kirchhoff's first law: ( Kirchhoffs Current Law(KCL)) Kirchhoffs first law; (Kirchhoffs Current Law (KCL) At any point in an electrical circuit that does not represent a capacitor According to the convention that every current flowing towards the plate, the sum of currents flowing towards that point is equal to the point is positive and that every current flowing away is negative(or um of currents flowing away from that point. the other way around), this principle can be stated as: 2i(toO That is: Eiin (to=2out(to) ①+21 ①+[ h l2=l3+l5 2-l2-160 4[5[61 (4)
北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Consistent reference direction (related reference direction) + v(t) - i(t) *** C1-1:Introduction to Linear Circuit Analysis Lumped Parameter Hypothesis, Basic Approaches, Basic Parameters, Basic Terminology, Reference direction, Fundamental Law (KVL, KCL, VCR) Chapter 1 Introductory Linear Circuit Analysis ----From time-domain analysis to frequency-domain analysis 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 I=1A,V=5V Vab=5V a b V=-5V ? P=VI > 0 ? 0: the actual direction follows the reference. If result<0: the actual direction opposites the reference. + v(t) - i(t) a b + v(t) - i(t) Chapter 1 Introductory Linear Circuit Analysis *** ----From time-domain analysis to frequency-domain analysis Consistent reference direction (related reference direction) 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Tea break! 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 C1-1:Introduction to Linear Circuit Analysis Lumped Parameter Hypothesis, Basic Approaches, Basic Parameters, Basic Terminology, Reference direction, Fundamental Law (KVL, KCL, VCR) Chapter 1 Introductory Linear Circuit Analysis ----From time-domain analysis to frequency-domain analysis 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Fundamental Law (KVL, KCL, VCR) Kirchhoff's first law : (Kirchhoff's Current Law (KCL)) At any point in an electrical circuit that does not represent a capacitor plate, the sum of currents flowing towards that point is equal to the sum of currents flowing away from that point. That is: ∑ijin(t0)=∑ijout(t0) ① 1 2 3 4 5 6 ② ③ (4) Law of Conservation of Charge (Gauss’s Law ) *** I2 = I3 + I5 J dS = 0 ∫∫Ò g 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Another description: Kirchhoff's first law : (Kirchhoff's Current Law (KCL)) According to the convention that every current flowing towards the point is positive and that every current flowing away is negative (or the other way around), this principle can be stated as: ∑i(t0)=0 ① 1 2 3 4 5 6 ② ③ (4) Fundamental Law (KVL, KCL, VCR) I2-I3-I5=0
Fundamental Law KCL, VCR) Fundamental Law (KVL, KCL, VCR) Kirchhofi's first law:(Kirchhoffs Current Law(KCL)) Kirchhoffs first law: (Kirchhoffs Current Law (KCL) i Atate pe st n an elements f or ircuit that does not represent a capacitor lowing towards that point is equal to the plate, the sum of currents flowing towards that point is equal to the sum of currents flowing away from that point. sum of currents flowing away from that point. That is:∑m(tb)=∑(b That is: n(toPO(to) 1 clased surface closed surfac l1+l3+14+ls Fundamental Law (KVL, KCL, VCR) Fundamental Law(KVL, KCL, VCR) Law of Conservation of Electric Potential (Law of Loop) Another description: (Kirchhoffs Voltage Law (KVL)) Kirchhoffs second law:(Kirchhoffs Voltage Law(KVL)) In any closed loop of a lumped parameter circuit, at any The directed sum of the electrical potential differences around any time, the sum of voltage increasing is equal to the sum of closed circuit loop must be zero. That is 2V(toFD voltage decreasing. That is: 2v in(to(to) If the voltage is positive V4=V1+V6 when it increases ①+L2 V-V-V=0 ③|V+V1+V=0 If the voltage is positive V4+V2+Vs=0 when it decreases +V=0 V+V1+V6=0 (4) (4) Chapter 1 Introductory Linear Circuit Analysis Fundamental Law (KVL, KCL, VCr) ----From time-domain analysis to frequency-domain analysis Attention: 1.reference directior 1. KCL=3 equations C1-2: Common circuit elements and Their Constraint Equations (branch direction) 2 Classification of components, resistance element, independent 2.The direction voltage decreasing I2-l]1so source, controlled source, dynamic element ->view from energy -actve, passive ①2 +V1+V=0 iew from direction >bidirectional unidirectional ew from linearity ->linear. nonlinear 4 5 3. VCR =equations ew from energy accumulation ->memoryless, memory (dynamic element) iew from controlling 4 Num of branches b=6 白3+3+6=12 equations unknown quantity =2b=12
北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 ① 1 2 3 4 5 6 ② ③ (4) Generalized node I1+I3+I4+I5=0 closed surface Fundamental Law (KVL, KCL, VCR) Kirchhoff's first law : (Kirchhoff's Current Law (KCL)) At any point in an electrical circuit that does not represent a capacitor plate, the sum of currents flowing towards that point is equal to the sum of currents flowing away from that point. That is: ∑ijin(t0)=∑ijout(t0) 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 ① 1 2 3 4 5 6 ② ③ (4) I = 0 Fundamental Law (KVL, KCL, VCR) Kirchhoff's first law : (Kirchhoff's Current Law (KCL)) At any point in an electrical circuit that does not represent a capacitor plate, the sum of currents flowing towards that point is equal to the sum of currents flowing away from that point. That is: ∑ijin(t0)=∑ijout(t0) closed surface 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Kirchhoff's second law : (Kirchhoff's Voltage Law (KVL)) 北京大学 北京大学 The directed sum of the electrical potential differences around any closed circuit loop must be zero. That is ∑vj (t0)=0 ① 1 2 3 4 5 6 ② ③ (4) V4-V1-V6=0 If the voltage is positive when it increases -V4+V1+V6=0 Law of Conservation of Electric Potential (Law of Loop) *** Fundamental Law (KVL, KCL, VCR) If the voltage is positive when it decreases E dl = 0 ∫Ñ g 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Kirchhoff's second law : (Kirchhoff's Voltage Law (KVL)) In any closed loop of a lump 北京大学 北京大学 ed parameter circuit, at any time, the sum of voltage increasing is equal to the sum of voltage decreasing . That is: ∑vj inc(t0)=∑vj dec(t0) ① 1 2 3 4 5 6 ② ③ (4) V4 =V1+V6 Another description: -V4+V1+V6=0 -V4+V2+V5=0 -V5+V3+V6=0 Fundamental Law (KVL, KCL, VCR) 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 ① 1 2 3 4 5 6 ② ③ (4) Attention: 1.reference direction (branch direction) 2.The direction voltage decreasing (loop direction) -I1-I2-I4=0 I2-I3-I5=0 I1+I3-I6=0 -V4+V1+V6=0 -V4+V2+V5=0 -V5+V3+V6=0 2.KVL 1.KCL 3.VCR Vi =Ri Ii Num of branches b=6 unknown quantity =2b=12 =3 equations = 3 equations = 6 equations 3+3+6=12 equations Fundamental Law (KVL, KCL, VCR) 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 C1-2:Common circuit elements and Their Constraint Equations Classification of components, resistance element, independent source, controlled source, dynamic element ->view from energy ->view from terminal ->view from direction ->view from linearity ->view from energy accumulation ->view from controlling ->active, passive ->two, four, more ->bidirectional, unidirectional ->linear, nonlinear ->memoryless, memory (dynamic element) ->independent, controlled Chapter 1 Introductory Linear Circuit Analysis ----From time-domain analysis to frequency-domain analysis
Cl-2t Common circuit elements and Their Constraint Equations Chapter 1 Introductory Linear Circuit Analysis ---From time-domain analysis to frequency-domain analysis C1-2: Common circuit elements and Their Constraint Equations active pass ts, resistance element, independent a. Linear Time-invariant resistance. R ->view from energy w from terminal two four. more Constraint Equation: v(tFRI( >view from direction bidirectional unidirectional mbol oCHo view from linear -linear nonlinear others:M。01 >view from energy accumulation ->memoryless, memory (dynamie element) view from controlling I/R=G transadmittance independent, controlled t) I-V curve Bidirectional,linear,momeryless Cl-21 Common cireuit elements and Their Constraint Equations Cl-2t Common circuit elements and Their Constraint Equations b. Nonlinear resistance (Usually the semiconductor electric vacuum devices) Constraint Equation: v(t=r[i(t)] or i(t=gIv(t) short Example 1: semiconductor diode tool/Rog transadmittance Constraint Equation v(tr[i(t)]or i(t=g(t) feature feature Passive, two-terminal, I I-V curve Bidirectional linear I-V curve nonlinear, moneyless C1-2: Common circuit elements and Their Constraint Equations Cl-2: Common circuit elements and Their Constraint Equations Example 2: tunnel diode Constraint Equation: i(tgIv(t) voltage controlled element oltage controlled resistor +wt)- static resistance: R=vp(t)ip(t) Example 3: gas diode Constraint Equation: v(tFr[i(t) Dynamic resistance: R=d".(tyd[o(t] Current controlled elemer tive resistance Source characteristic Current controlled resistor If a nonlinear resistance works in the negative esistance zone, it will behave like a source which means it will supply energy v(t)
北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 0 + v(t) - i(t) I V active passive passive active R - VA Characteristic curve C - CV Characteristic curve L – WI Characteristic curve C1-2:Common circuit elements and Their Constraint Equations ->view from energy ->view from terminal ->view from direction ->view from linear ->view from energy accumulation ->view from controlling ->active, passive ->two, four, more ->bidirectional, unidirectional ->linear, nonlinear ->memoryless, memory (dynamic element) ->independent, controlled The origin symmetry 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 C1-2:Common circuit elements and Their Constraint Equations Classification of components, resistance element, independent source, controlled source, dynamic element a. Linear Time-invariant resistance : R Constraint Equation: v(t)=Ri(t) symbol : others: 0 + v(t) - i(t) I V I-V curve tgα=1/R=G transadmittance feature: Passive, two-terminal, Bidirectional, linear, momeryless Chapter 1 Introductory Linear Circuit Analysis ----From time-domain analysis to frequency-domain analysis 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 0 + v(t) - i(t) I V I-V curve 0 I V R=0 0 I V R=∞ short open *** C1-2:Common circuit elements and Their Constraint Equations tgα=1/R=G transadmittance feature: Passive, two-terminal, Bidirectional, linear, momeryless 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 b. Nonlinear resistance: (Usually the semiconductor / electric vacuum devices) Constraint Equation : v(t)=r[i(t)] or i(t)=g[v(t)] Symbol : Example 1: semiconductor diode Constraint Equation : v(t)=r[i(t)] or i(t)=g[v(t)] 0 + v(t) - i(t) I V I-V curve feature: Passive, two-terminal, unidirectional, nonlinear, momeryless C1-2:Common circuit elements and Their Constraint Equations 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 voltage controlled element voltage controlled resistor 0 + v(t) - i(t) I V Example 2: tunnel diode Constraint Equation : i(t)=g[v(t)] Current controlled element Current controlled resistor a 0 + v(t) - i(t) I V Example 3: gas diode Constraint Equation: v(t)=r[i(t)] b a b C1-2:Common circuit elements and Their Constraint Equations 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 0 I V 0 I V a b a b 0 I V static resistance : Rs=vp(t)/ip(t) Dynamic resistance: Rd=d[vp(t)]/d[ip(t)] p p Negative resistance zone:Rd<0 Source characteristic: If a nonlinear resistance works in the negative resistance zone, it will behave like a source, which means it will supply energy. C1-2:Common circuit elements and Their Constraint Equations
Cl-2t Common circuit elements and Their Constraint Equations Cl-2: Common circuit elements and Their Constraint Equations l=0 DC energy ->AC energy Source characteristic Special nonlinear resistance element: Linear source t If a nonlinear resistance works in the negative resistance zone. it will behave like a source Independent(ideal) voltage source which means it will supply energy Independent(ideal)current source quiescent operating point: The static working state in DC ----From time-domain analysis to frequency-domain analysis C1-2t Common circuit elements and Their Constraint Equations Cl-2t Common circuit elements and Their Constraint Equations Cl-2: Common cireuit elements and Their Constraint Equations 2 Classification of components, resistance element, independent source, controlled source, dynamic element source, controlled source, dynamic element Ideal voltage source dOdO Ideal voltage source Symbol: o-e-o others: 0-6o○oAC Symbol: o-e-o others: 0- Feature: two-terminal clement, its voltage is having nothing to do with its current. Feature: two-terminal clement, its voltage is having nothing to do with its current. 0 P>0? a Ik yey, p P0? l,=0.1A Components paralleled with the ideal voltage source have nothing (2 to do with the outer circuits IsI-I0A
北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 0 I V a b p quiescent operating point : The static working state in DC 0 t V V0 0 I t I0 DC energy ->AC energy bias Source characteristic: If a nonlinear resistance works in the negative resistance zone, it will behave like a source, which means it will supply energy. C1-2:Common circuit elements and Their Constraint Equations 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 0 I V I=I0 0 I V V=V0 Special nonlinear resistance element: Linear source Independent (ideal) voltage source Independent (ideal) current source C1-2:Common circuit elements and Their Constraint Equations 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Chapter 1 Introductory Linear Circuit Analysis ----From time-domain analysis to frequency-domain analysis C1-2:Common circuit elements and Their Constraint Equations Classification of components, resistance element, independent source, controlled source, dynamic element Ideal voltage source Symbol: + - others: + - ~ + - DC AC Feature : two-terminal element, its voltage is having nothing to do with its current. Vs P>0 ? P0 ? P0 ? 0 I V I0 Is2=5A Is1=10A R *** Is1=10A / Is2=5A R Is1=10A / Is2=5A R C1-2:Common circuit elements and Their Constraint Equations
Cl-2, Common circuit elements and Their Constraint equatfons C1-2, Common circuit elements and Their Constraint equations Ideal current source Symbol: o① o others:oo Feature: a two-terminal element, its current has nothing to do with its voltage sr10\ → Conclusion: Components in series with the ideal current source have nothing to do with the outer circuits. Cl-21 Common cireuit elements and Their Constraint Equations Chapter l Introductory Linear Circuit Analysis ---From time-domain analysis to frequency-domain analysis source Cl-I: Introduction to Linear Circuit Analysi :二 pLumped Parameter Hypothesis, Basic Approaches, Basic Terminology, Reference direction, Source shaone: othing ineos iata the d ter ith the ideal voltage Fundamental Law(KVL, KCL, VCR) cIrcuits Conclusion: Components in series with the ideal current source have nothing to do with the outer circuits Chapter 1 Introductory Linear Circuit Analysis Summary for today ----From time-domain analysis to frequency-domain analysis C1-2: Common circuit elements and Their C1-2: Common cireuit elements and Their Constraint Equations Constraint Equations Classification of components, resistance 2 Classification of components, resistance lement, independent source, controlled source element, independent source, controlled element nclusion: Components paralleled with the ideal voltage source have nothing to do with the outer circuits. Conclusion: Components in series with the ideal current source have nothing to do with the outer circuits
北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 0 I V I0 Is R I =Is ? Conclusion:Components in series with the ideal current source have nothing to do with the outer circuits. Is *** Ideal current source: Symbol: others: Feature: a two-terminal element, its current has nothing to do with its voltage. Is C1-2:Common circuit elements and Their Constraint Equations 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 P>0 ? P0 ? 0 I V Is / / Is1=10A / Is2=5A R + - Vs1× + - Vs2 Vs1× + - Is2=5A Is1=10A R × × C1-2:Common circuit elements and Their Constraint Equations *** 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Conclusion:Components paralleled with the ideal voltage source have nothing to do with the outer circuits. Conclusion:Components in series with the ideal current source have nothing to do with the outer circuits. Independent source R + - Vs + V =Vs - + - Vs + V =Vs - + - Vs Is R I =Is Is *** C1-2:Common circuit elements and Their Constraint Equations 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 C1-1:Introduction to Linear Circuit Analysis Lumped Parameter Hypothesis, Basic Approaches, Basic Parameters, Basic Terminology, Reference direction, Fundamental Law (KVL, KCL, VCR) Chapter 1 Introductory Linear Circuit Analysis ----From time-domain analysis to frequency-domain analysis 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 C1-2:北京大学 北京大学 Common circuit elements and Their Constraint Equations Classification of components, resistance element, independent source, controlled source, dynamic element Summary for today’s lecture Conclusion:Components paralleled with the ideal voltage source have nothing to do with the outer circuits. Conclusion:Components in series with the ideal current source have nothing to do with the outer circuits. 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Chapter 1 Introductory Linear Circuit Analysis ----From time-domain analysis to frequency-domain analysis C1-2:Common circuit elements and Their Constraint Equations Classification of components, resistance element, independent source, controlled source, dynamic element