飞号与系要 §3,1引言 贵米 米 新疆大学信息科学与工程学院电子系 2011.1 退出 开始
新疆大学信息科学与工程学院电子系 2011.1 §3.1 引言
频域分析 从本章开始由时域转入变换域分析,首先讨论傅里 叶变换。傅里叶变换是在傅里叶级数正交函数展开的基 础上发展而产生的,这方面的问题也称为傅里叶分析 (频域分析)。将信号进行正交分解,即分解为三角函 数或复指数函数的组合。 频域分析将时间变量变换成频率变量,揭示了信号 内在的频率特性以及信号时间特性与其频率特性之间的 密切关系,从而导出了信号的频谱、带宽以及滤波、调 制和频分复用等重要概念
X 第 2 频域分析 页 从本章开始由时域转入变换域分析,首先讨论傅里 叶变换。傅里叶变换是在傅里叶级数正交函数展开的基 础上发展而产生的,这方面的问题也称为傅里叶分析 (频域分析)。将信号进行正交分解,即分解为三角函 数或复指数函数的组合。 频域分析将时间变量变换成频率变量,揭示了信号 内在的频率特性以及信号时间特性与其频率特性之间的 密切关系,从而导出了信号的频谱、带宽以及滤波、调 制和频分复用等重要概念
主要内容 本章从傅里叶级数正交函数展开问题开始讨论,引出傅 里叶变换,建立信号频谱的概念。 ·通过典型信号频谱以及傅里叶变换性质的研究,初步掌 握傅里叶分析方法的应用。 对于周期信号而言,在进行频谱分析时,可以利用傅里 叶级数,也可以利用傅里叶变换,傅里叶级数相当于傅 里叶变换的一种特殊表达形式。 本章最后研究抽样信号的傅里叶变换,引入抽样定理
X 第 3 主要内容 页 •本章从傅里叶级数正交函数展开问题开始讨论,引出傅 里叶变换,建立信号频谱的概念。 •通过典型信号频谱以及傅里叶变换性质的研究,初步掌 握傅里叶分析方法的应用。 •对于周期信号而言,在进行频谱分析时,可以利用傅里 叶级数,也可以利用傅里叶变换,傅里叶级数相当于傅 里叶变换的一种特殊表达形式。 •本章最后研究抽样信号的傅里叶变换,引入抽样定理
发展历史 1822年,法国数学家傅里叶(J.Fourier,.1768-1830)在研究热传导理 论时发表了"“热的分析理论”,提出并证明了将周期函数展开为 正弦级数的原理,奠定了傅里叶级数的理论基础。 ·泊松Poisson)、高斯(Guass)等人把这一成果应用到电学中去,得 到广泛应用。 19世纪末,人们制造出用于工程实际的电容器。 进入20世纪以后,谐振电路、滤波器、正弦振荡器等一系列具体 问题的解决为正弦函数与傅里叶分析的进一步应用开辟了广阔的 前景。 ·在通信与控制系统的理论研究和工程实际应用中,傅里叶变换法 具有很多的优点。 ·“F℉T”快速傅里叶变换为傅里叶分析法赋予了新的生命力。 一贝
X 第 4 发展历史 页 •1822年,法国数学家傅里叶(J.Fourier,1768-1830)在研究热传导理 论时发表了“热的分析理论”,提出并证明了将周期函数展开为 正弦级数的原理,奠定了傅里叶级数的理论基础。 •泊松(Poisson)、高斯(Guass)等人把这一成果应用到电学中去,得 到广泛应用。 •19世纪末,人们制造出用于工程实际的电容器。 •进入20世纪以后,谐振电路、滤波器、正弦振荡器等一系列具体 问题的解决为正弦函数与傅里叶分析的进一步应用开辟了广阔的 前景。 •在通信与控制系统的理论研究和工程实际应用中,傅里叶变换法 具有很多的优点。 • “FFT”快速傅里叶变换为傅里叶分析法赋予了新的生命力。 下一页