微分 1.完成下式: d(sin2x)=2sinxd sin 2xd CA. x,sinx C B. sinx,x CC. x,sin2x C D. sin2x,x 2. e-*dx=d dx=d xInx C A.-e*,Inx C B.-e-*,Inlnx C C.e*,Inx C D.e-*InInx 3.y=(1+x-Cosx,则少= d(1+x-cosx) C A.2(1+x-cosx) C B.(1+x-cosx)2 C C.2(1+x-cosx)(1+sin x) C D.2(1+x-cosx)2 4. C A.1-2In x CB.x(1-2nx对 C C.(1-2Inx)dx C D.x(1-2Inx)dx x2.y2 5.若隐函数为+云引,则= bxdx dxdx C A.a'y C B.by b2a心 CC. C D.a'y
微分 1.完成下式: d(sin ) 2sin d _________ sin 2 d ________ 2 x x x . A. x,sin x B. sin x, x C. 2 x,sin x D. 2 sin x, x 2. e d d x x , d ln d x x x . A. x e , ln x B. x e ,ln ln x C. x e ,ln x D. x e ,ln ln x 3. 2 y (1 x cos x) , 则dy _______________d1 x cos x. A. B. 2 (1 x cos x) C. D. 2 2(1 x cos x) 4. ________________ 1 ) ln d( 2 4 x x x . A. B. C. (1 2ln x)dx D. x(1 2 ln x)dx 5.若隐函数为 1 2 2 2 2 b y a x , 则dy __________________. A. x a y b x d 2 2 B. 2 2 d a x x b y C. x b y a x d 2 2 D. x a y b x d 2 2
1.B.d(sin2 x)=2sin xdsin x=sin 2xdx. 2.B.解d(-e)=edr; dxdinx =d(lninx). xInx Inx 3.A.dy=2(1+x-cosx)d (1+x-cosx) =2(1+x-cosx)(1+sin x)dx. 4.D.解 dlnx、x2dlnx-Inxdx2x·xdx-2xn=1-2 Inx dx. x4 3 5.D.解 等式两端对x求微分,得 63·2=0, 0之2xdr+ b2x dy=- d. a'y
1.B. 解 d(sin x) 2sin xd sin x sin 2xdx 2 . 2.B. 解 d( e ) e d x x x ; d(ln ln ) ln d ln ln d x x x x x x . 3. A. 解 dy 2(1 x cos x)d 1 x cos x = 2(1 x cos x)1 sin xdx. 4.D. 解 4 2 4 2 2 2 d 2 ln d 1 d ln ln d ) ln d( x x x x x x x x x x x x x x = d . 1 2ln 3 x x x 5. D. 解 等式两端对x求微分,得 2 d 0 1 2 d 1 2 2 y y b x x a , d d . 2 2 x a y b x y