第十二章非正弦周期电流电路和信号的频谱 重点 1.周期函数分解为傅立叶级数和信号的频谱; 2.周期量的有效值、平均值; 3.非正弦电流电路的计算和平均功率 4.滤浪器的概念
第十二章 非正弦周期电流电路和信号的频谱 重点 1. 周期函数分解为傅立叶级数和信号的频谱; 2. 周期量的有效值、平均值; 3. 非正弦电流电路的计算和平均功率; 4. 滤波器的概念
121非正弦周期信号 122周期函数分解为傅立叶级数 123有效值、平均值和平均功率 12.4非正弦周期电流电路的计算
12.1 非正弦周期信号 12.2 周期函数分解为傅立叶级数 12.3 有效值、平均值和平均功率 12.4 非正弦周期电流电路的计算
12.1非正弦周期信号 一.非正弦周期信号 按非正弦规律变化的周期电源和信号为非正弦周期信号。 例 u u 方波电压 锯齿波 脉冲波形
12.1 非正弦周期信号 一.非正弦周期信号 按非正弦规律变化的周期电源和信号为非正弦周期信号。 例 u t 方波电压 u t 锯齿波 i t 脉冲波形
谐波分析法 首先,应用数学中的傅里叶级数展开方法,将非正弦周 期激励电压、电流或信号分解为一系列不同频率的正弦量之 和 根据线性电路的叠加定理,分别计算在各个正弦量单独 作用下在电路中产生的同频正弦电流分量和电压分量; 最后,把所得分量按时域形式叠加,得到电路在非正弦 周期激励下的稳态电流和电压。 这种方法称为谐波分析法。实质上是把非正弦周期电流 电路的计算化为一系列正弦电流电路的计算
二.谐波分析法 这种方法称为谐波分析法。实质上是把非正弦周期电流 电路的计算化为一系列正弦电流电路的计算。 首先,应用数学中的傅里叶级数展开方法,将非正弦周 期激励电压、电流或信号分解为一系列不同频率的正弦量之 和; 根据线性电路的叠加定理,分别计算在各个正弦量单独 作用下在电路中产生的同频正弦电流分量和电压分量; 最后,把所得分量按时域形式叠加,得到电路在非正弦 周期激励下的稳态电流和电压
122周期函数分解为傅里叶级数 傅氏级数 周期电流、电压、信号等都可以用一个周期函数表 示, f(t)=f(t+kT) 式中T为周期函数f(t)的周期,k=0,1,2,… 如果给定的周期函数满足狄里赫利条件,它就能展 开成一个收敛的傅里叶级数,即
12.2 周期函数分解为傅里叶级数 一.傅氏级数 周期电流、电压、信号等都可以用一个周期函数表 示,即 f(t)=f(t+kT) 式中 T为周期函数f(t)的周期,k=0,1,2,…。 如果给定的周期函数满足狄里赫利条件,它就能展 开成一个收敛的傅里叶级数,即
f(t)=a,+ a, cos(@, t )+b, sin(@, t)]+[a, cos(2a, t)+b, Sin(20,+]+ …+[a4cos(kap)+bsim(ko]+… 无法显示该图片 ao+2 la, cos(ka, t) +bk sin(ka, I 还可以写成另一种形式: f()+A,+A,m cos(,t+W1)+A2m cos(2 a, t +v2)+ H A cos(kat+yu+ =A0+∑ A cos(ka1t+vk) k=1 两种形式系数之间的关系如下: 三心0 a=Akm b cos n kk=arctan(-) km 2+b2b= km sin Yk
cos( ) sin( ) cos( ) sin( ) ( ) cos( ) sin( ) cos(2 ) sin(2 ) 1 1 1 0 1 1 0 1 1 1 1 2 1 2 1 a a k t b k t a k t b k t f t a a t b t a t b t k k k k k = + + + + + = + + + + + = 还可以写成另一种形式: cos( ) cos( ) ( ) cos( ) cos(2 ) 1 1 0 1 0 1 1 1 2 1 2 1 k m k k k m k m m A A k t A k t f t A A t A t = + + + + + = + + + + + = 两种形式系数之间的关系如下: A0 = a0 2 2 Akm = ak + bk bk Akm k = − sin arctan( ) k k k a − b ak = Akm cos k =
f(t)=4 +Am cos(@,t+yu+Arm cos(2@,t+y21+ + Akm cos(ha,t+y+ =A+∑ A cOS(ka1t+vk) =1 傅里叶级数是一个无穷三角级数。展开式中: A一为周期函数f(t)的恒定分量(或直流分量); Aimco(a1t+的1)一为一次谐波(或基波分量),其 周期或频率与原周期函数f(t)相同; 其他各项统称为高次谐波,即2次、3次、∴k次谐波
傅里叶级数是一个无穷三角级数。展开式中: A0 —为周期函数f(t)的恒定分量(或直流分量); cos( ) cos( ) ( ) cos( ) cos(2 ) 1 1 0 1 0 1 1 1 2 1 2 1 k m k k k m k m m A A k t A k t f t A A t A t = + + + + + = + + + + + = A1mcos(ω1 t +ψ1 ) —为一次谐波(或基波分量),其 周期或频率与原周期函数f(t)相同; 其他各项统称为高次谐波,即2次、3次、…k次谐波
f(t=a,+a, cos(@, t)+b, sin(@, o]+[a, cos(2@, )+b, sin(2@, o]+ +a, cos(ka, t)+bk sin(ko, o]+ ao+> acos(ka, t)+b sin(ka,o) 上式中的系数,可由下列公式计算 ao=f(tdt=3(t)dt k f(t)cos(ka,t)dt f(tcos(ka,t)dt z o J(O)cos(ka,(d(@)=T 2兀 f(tcos(ko,t)d(o,t) b:T/()sin(ko, t)dt =f()sin( ko, t)dt 2 d f(t)sin(ko, t)d(o, t)=rr f(t)sin(ko, t)d(@t 上述计算式中k=1,2,3
上式中的系数,可由下列公式计算: 上述计算式中k=1, 2, 3, … − = = 2 2 0 0 ( ) 1 ( ) 1 T T T f t dt T f t dt T a ( )cos( ) ( ) 1 ( )cos( ) ( ) 1 ( )cos( ) 2 ( )cos( ) 2 1 1 2 0 1 1 2 2 1 0 1 − − = = = = f t k t d t f t k t d t f t k t dt T f t k t dt T a T T T k ( )sin( ) ( ) 1 ( )sin( ) ( ) 1 ( )sin( ) 2 ( )sin( ) 2 1 1 2 0 1 1 2 2 1 0 1 − − = = = = f t k t d t f t k t d t f t k t dt T f t k t dt T b T T T k cos( ) sin( ) cos( ) sin( ) ( ) cos( ) sin( ) cos(2 ) sin(2 ) 1 1 1 0 1 1 0 1 1 1 1 2 1 2 1 a a k t b k t a k t b k t f t a a t b t a t b t k k k k k = + + + + + = + + + + + =
频谱 用长度与各次谐波振幅大小相对应的线段,按频率的高 低顺序把它们依次排列起来,所得到的图形,称为f(t)的频 谱图。 幅度频谱:表示各谐波分量的振幅的频谱为幅度频谱。 相位频谱:把各次谐波的初相用相应线段依次排列的频谱 为相位频谱。 例 Akm 01 O12o130141501601 由于各谐波的角频率是o1的整数倍,所以这种频谱 是离散的,又称为线频谱
二.频谱 用长度与各次谐波振幅大小相对应的线段,按频率的高 低顺序把它们依次排列起来,所得到的图形,称为f(t)的频 谱图。 幅度频谱:表示各谐波分量的振幅的频谱为幅度频谱。 相位频谱:把各次谐波的初相用相应线段依次排列的频谱 为相位频谱。 例 0 Akm kω1 ω1 2ω1 3ω1 4ω1 5ω1 6ω1 由于各谐波的角频率是ω1的整数倍,所以这种频谱 是离散的,又称为线频谱
例12-1求图示周期性矩形信号的傅立叶级数展开式及其频谱. f(t) E m/2 T 2丌 oit E 解:f(t)在第一个周期内的表达式为 ∫(t)=E, 0≤t三2 f(t=e ≤t≤T 2 利用公式求系数为:
例12-1 求图示周期性矩形信号的傅立叶级数展开式及其频谱. f(t) Em -Em 0 π 2π ω1t T/2 T t 解: f(t)在第一个周期内的表达式为 m m f t E f t E = − = ( ) ( ) t T T T t 2 2 0 利用公式求系数为: