2017-2018学年山东省菏泽市鄄城县七年级(上)期中数学试卷 选择题(每小题3分,共30分) 1.下列说法中正确的是() A.3.14不是分数 B.-2是整数 C.数轴上与原点的距离是2个单位的点表示的数是2 D.两个有理数的和一定大于任何一个加数 2.在有理数-1,0,3,0.5中,最大的数是() A.-1B.0C.3D.0.5 3.习近平总书记提出了未来5年“精准扶贫”的战略构想,意味着每年要减贫约1150000 人,将数据11500000用科学记数法表示为() A.1.15×106B.1.15×107C.0.115×108D.11.5×106 4.下列说法不正确的是() A.用一个平面去截一个正方体可能截得五边形 B.五棱柱有10个顶点 C.沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆柱 D.将折起的扇子打开,属于“线动成面”的现象 5.下列各式的值相等的是() A.-32与-23B.32与|-2|3C.-32与-(-3)2D.(-3)2与-32 6.下列代数式中,既不是单项式也不是多项式的是() A. 3a2-2b+1 b 5ab-c x十y b+2c D 7.若A、B都是五次多项式,则A+B一定是() A.五次多项式B.十次多项式 C.不高于五次的整式D.单次项 8.如图,数轴上A、B两点分别对应有理数a、b,则下列结论:①ab>0;②a-b>0 ③a+b>0:④a|-|b|>0中正确的有() A B a101 A.1个B.2个C.3个D.4个
2017-2018 学年山东省菏泽市鄄城县七年级(上)期中数学试卷 一、选择题(每小题 3 分,共 30 分) 1.下列说法中正确的是( ) A.3.14 不是分数 B.﹣2 是整数 C.数轴上与原点的距离是 2 个单位的点表示的数是 2 D.两个有理数的和一定大于任何一个加数 2.在有理数﹣1,0,3,0.5 中,最大的数是( ) A.﹣1 B.0 C.3 D.0.5 3.习近平总书记提出了未来 5 年“精准扶贫”的战略构想,意味着每年要减贫约 11500000 人,将数据 11500000 用科学记数法表示为( ) A.1.15×106 B.1.15×107 C.0.115×108 D.11.5×106 4.下列说法不正确的是( ) A.用一个平面去截一个正方体可能截得五边形 B.五棱柱有 10 个顶点 C.沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆柱 D.将折起的扇子打开,属于“线动成面”的现象 5.下列各式的值相等的是( ) A.﹣3 2 与﹣2 3 B.3 2 与|﹣2| 3 C.﹣3 2 与﹣(﹣3)2 D.(﹣3)2 与﹣3 2 6.下列代数式中,既不是单项式也不是多项式的是( ) A.3a2﹣2b+1 B. C.﹣ D. 7.若 A、B 都是五次多项式,则 A+B 一定是( ) A.五次多项式 B.十次多项式 C.不高于五次的整式 D.单次项 8.如图,数轴上 A、B 两点分别对应有理数 a、b,则下列结论:①ab>0;②a﹣b>0; ③a+b>0;④|a|﹣|b|>0 中正确的有( ) A.1 个B.2 个C.3 个D.4 个
9.如图是一个正方体纸盒的平面展开图,每一个正方形内部都有一个单项式.当折成 正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所表示的单 项式是() bb. cc. dd. e 10.观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三 角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做 法,将这种做法继续下去(如图2,图3..),则图6中挖去三角形的个数为( A A 图2 A.121B.362C.364D.729 二、填空题(每小题3分,共24分) 11.已知点A和点B在同一数轴上,点A表示数-1,又点B和点A相距2个单位长 度,则点B表示的数是 12.若a与2互为相反数,则|a+2| 13.如图所示,把底面直径是8厘米,高是20厘米的圆柱切成若干等分,拼成一个近 似的长方体,这个近似长方体的表面积是 cm2,体积是cm3 14.小亮按如图所示的程序输入一个数x等于10,最后输出的结果为 输入x 算5x+1的值 输出结果 15.如果52x2y+(m-3)x5是关于x,y的六次二项式,则m、n应满足条件
9.如图是一个正方体纸盒的平面展开图,每一个正方形内部都有一个单项式.当折成 正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所表示的单 项式是( ) A.b B.c C.d D.e 10.观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成 4 个小三 角形,挖去中间的一个小三角形(如图 1);对剩下的三个小三角形再分别重复以上做 法,…将这种做法继续下去(如图 2,图 3…),则图 6 中挖去三角形的个数为( ) A.121 B.362 C.364 D.729 二、填空题(每小题 3 分,共 24 分) 11.已知点 A 和点 B 在同一数轴上,点 A 表示数﹣1,又点 B 和点 A 相距 2 个单位长 度,则点 B 表示的数是 . 12.若 a 与 2 互为相反数,则|a+2|= . 13.如图所示,把底面直径是 8 厘米,高是 20 厘米的圆柱切成若干等分,拼成一个近 似的长方体,这个近似长方体的表面积是 cm2,体积是 cm3. 14.小亮按如图所示的程序输入一个数 x 等于 10,最后输出的结果为 . 15.如果 5 2x 2y n+(m﹣3)x 5 是关于 x,y 的六次二项式,则 m、n 应满足条件 .
16.若干个相同的小立方体搭成的几何体从上面和从左面看到的形状如图所示,则满足 条件的几何体中小立方体的个数最少是 从上面看 从左面看 17.对于有理数a,b,定义一种新运算“※”,即a※b=3a+2b,则式子(x+y)※(x-y) 化简后得到 18.如图所示的图案是按一定规律排列的,照此规律,在第1至第2017个图案中,ν” 共有个 4◆◆晶◆v◆ 三、解答题(本题共66分) 19.(8分)(1)将下列各数在数轴上表示出来,并按从小到大的顺序用“”连接 20.(12分)计算: (1)(-1)3×(-1):3 7111 9126)×361÷5 21.(8分)先化简,再求值: 2x-2(x-3y2)+(-2x+3y2),其中x,y满足(x+2)2+y-31=0 22.(9分)已知|a|=3,b2=49.求a+b的值 23.(9分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40 元.厂方在开展促销活动期间,向客户提供两种优惠方案 ①买一套西装送一条领带 ②西装和领带都按定价的90%付款 现某客户要到该服装厂购买西装20套,领带ⅹ条(x>20) (1)若该客户按方案①购买,需付款_元(用含x的代数式表示) 若该客户按方案②购买,需付款 元(用含x的代数式表示);
16.若干个相同的小立方体搭成的几何体从上面和从左面看到的形状如图所示,则满足 条件的几何体中小立方体的个数最少是 . 17.对于有理数 a,b,定义一种新运算“※”,即 a※b=3a+2b,则式子(x+y)※(x﹣y) 化简后得到 . 18.如图所示的图案是按一定规律排列的,照此规律,在第 1 至第 2017 个图案中,“ ” 共有 个. 三、解答题(本题共 66 分) 19.(8 分)(1)将下列各数在数轴上表示出来,并按从小到大的顺序用“<”号连接起 来. ﹣3,﹣|﹣2.5|,﹣(﹣2 ),0,﹣(﹣1),|﹣4| (2)写出以上各数的相反数,并用“>”连接. 20.(12 分)计算: (1)(﹣1 )3×(﹣ )÷ ; (2)[﹣2 2﹣( + + )×36]÷5. 21.(8 分)先化简,再求值: x﹣2(x﹣ y 2)+(﹣ x+ y 2),其中 x,y 满足(x+2)2+|y﹣3|=0. 22.(9 分)已知|a|=3,b 2=49.求 a+b 的值. 23.(9 分)某服装厂生产一种西装和领带,西装每套定价 200 元,领带每条定价 40 元.厂方在开展促销活动期间,向客户提供两种优惠方案: ①买一套西装送一条领带; ②西装和领带都按定价的 90%付款. 现某客户要到该服装厂购买西装 20 套,领带 x 条(x>20). (1)若该客户按方案①购买,需付款 元(用含 x 的代数式表示); 若该客户按方案②购买,需付款 元(用含 x 的代数式表示);
(2)若ⅹ=30,通过计算说明此时按哪种方案购买较为合算? 24.(10分)在平整的地面上,有若干个完全相同棱长的小正方体堆成一个几何体,如 图所示 (1)请画出这个几何体的三个方向看到的图形 (2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有 个正 方体只有一个面是黄色,有 正方体只有两个面是黄色,有个正方体只 有三个面是黄色 25.(10分)【阅读理解】 我们知道,1+2+3+.+ 那么12+22+32+…+n2结果等于多少呢 在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为 2+2,即2,…:第n行n个圆圈中数的和为”m个mn,即m2,这样,该三角形数阵中 n(n+1) 共有个圆圈,所有圆圈中数的和为12+22+32++n2 第1行…… … 第n行…①① 第1行 蔗转 第行…9分“e9 旋转Q∴ 一阅 图2 【规律探究】 将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同 位置圆圈中的数(如第n-1行的第一个圆圈中的数分别为n-1,2,n),发现每个 位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的 总和为:3(12+22+32++n 因此,12+22+32+.+n2=
(2)若 x=30,通过计算说明此时按哪种方案购买较为合算? 24.(10 分)在平整的地面上,有若干个完全相同棱长的小正方体堆成一个几何体,如 图所示. (1)请画出这个几何体的三个方向看到的图形. (2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有 个正 方体只有一个面是黄色,有 个正方体只有两个面是黄色,有 个正方体只 有三个面是黄色. 25.(10 分)【阅读理解】 我们知道,1+2+3+…+n= ,那么 1 2+2 2+3 2+…+n 2 结果等于多少呢? 在图 1 所示三角形数阵中,第 1 行圆圈中的数为 1,即 1 2,第 2 行两个圆圈中数的和为 2+2,即 2 2,…;第 n 行 n 个圆圈中数的和为 ,即 n 2,这样,该三角形数阵中 共有 个圆圈,所有圆圈中数的和为 1 2+2 2+3 2+…+n 2. 【规律探究】 将三角形数阵经两次旋转可得如图 2 所示的三角形数阵,观察这三个三角形数阵各行同 一位置圆圈中的数(如第 n﹣1 行的第一个圆圈中的数分别为 n﹣1,2,n),发现每个 位置上三个圆圈中数的和均为 ,由此可得,这三个三角形数阵所有圆圈中数的 总和为:3(1 2+2 2+3 2+…+n 2)= ,因此,1 2+2 2+3 2+…+n 2= .
【解决问题】 根据以上发现,计算 22+32+…+2017的结果为 +2+3+…+2017
【解决问题】 根据以上发现,计算: 的结果为 .
2017-2018学年山东省菏泽市鄄城县七年级(上)期中数学试卷 参考答案 选择题(每小题3分,共30分) 1.B;2.C;3.B;4.C:5.C:6.D;7.C 二、填空题(每小题3分,共24分) 12.0: 13.176+160;320; 14.256 15.n=4,m≠ 17.5x+y; 18.504; 解答题(本题共66分) 解:(1)如图所示: (-1)-(2)+4 543·2112·34 (2)由数轴可得: 4>-(-2÷)>-(-1)>0>-2.5>-3
2017-2018 学年山东省菏泽市鄄城县七年级(上)期中数学试卷 参考答案 一、选择题(每小题 3 分,共 30 分) 1.B;2.C;3.B;4.C;5.C;6.D;7.C;8.A;9.D;10.C; 二、填空题(每小题 3 分,共 24 分) 11.﹣3 或 1; 12.0; 13.176π+160;320π; 14.256; 15.n=4,m≠3; 16.5; 17.5x+y; 18.504; 三、解答题(本题共 66 分) 19. 20.
解:(1)(1)3x() 27 (2)[-22(2111 +)×36]+5 9126 =[4-×36×36-×36]-5 =[-4-28-33-6]-5 =71÷5 解:原式=x-2x+y2-3x+ 由(x+2)2-y-31=0,得到x=-2,y=3 则原式=6+9=15 ∵·a==3,b==7 当a=3,b=7时,a+b=10;当a=3,b=7时,a+b=4;当a=3,b=7时,a+b=4;当a=3,b=.7时,a b=-10 解:(1)方案⑩需付费为:200×20-(x-20)x40=(40x-3200)元; 方案②需付费为:(200×20-40x)×0.9=(3600-36x)元; (2)当x=30元时 方案①需付款为:40x-3200=40×30-3200=4400元, 方案②需付款为:3600-36x=3600-36×30=4680元, 4400<4680, 选择方案①购买较为合算 24
21 . 22 . 23 . 24 .
解:(1)这个几何体的三个方向看到的图形如图所示; (2)在所有的小正方体中,只有一个面是黄色的应该是第一列正方体中最底层中间那个,共一个; 有两个面是黄色的应该是第一列底层最后那个和第二列最后面那个,共两个;只有三个面是黄色的应 该是第一列第二层最后面那个,第二列最后=前面那个,第三列最底层那个,共3个; 故答案为1,2,3 25 解:【规律探究】 由题意知,每个位置上三个圆圈中数的和均为n-1+2+n=2n+1 由此可得,这三个三角形数阵所有圆圈中数的总和为: 3(12+22+32+.+n2)=(2n+1)x(1+2+3++n)=(2n+1) 因此,12+22 n(2n+1)(n+1) 6 故答案为:2+1,2(+1)2+1),+1)(2+12; 6 【解决问题】 2017×(2017+1)×(2×2017+1) 原式 1×2017×(2017+1 故答案为:1345
25