ME369-系统棋型、分析与控制 9.1控制系统的状态空间分析 School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 引例1] R ☐000m duc=i dt di +Ri+uc =u School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 1
1 ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University 9.1控制系统的状态空间分析 ME369-系统模型、分析与控制 ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University [引例 1] Ri u u dt di L i dt du C C C
状态空间表达 D ()=Ax(1)+Bu(t) y(t)=Cx(t)+Du(t) School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 例1] M d +b+e=0) dt x(t)=x(t) M x2(t)=x(t) L白b y=x School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 2
2 ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University 状态空间表达 x Ax Bu ( ) ( ) ( ) t t t y Cx Du ( ) ( ) ( ) t t t ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University [例1] 2 2 ( ) d x dx M b kx u t dt dt 1 x t x t ( ) ( ) 2 x t x t ( ) ( ) 1 y x
[例2] (0 「M血=K,0,-y+B,_)-Ky-B血 =f-K0-y)B,(座-$ M2 dt dt dt School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 模型转化一能控式、 能观式状态空间 ym+ay-l+…an-少+any=btm+b4im-l+…+bni+b,u Y(s) bs”+bs"-1++bn-1S+ba U(s) s"+as+.+ars+an 0 1 0 07 能控式(Controllable canonical form) 0 0 1… 0 x+ 0 0:0 0 0… -0。-01-an-2… -a, 1 y=[b-a,bo b-ambo ···b2-a2b b-abo]x+bou 「00… 0 -a. 能观式(Observable canonical form) 10 0 -an-l -a bo 龙= 1+ 00.… 0 -4 b,-a,bo 00…1 a L点-ab y=[00,..0]x+u School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 3
3 ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University 2 2 1 2 2 2 1 2 ( ) ( ) dv dy dy M f K y y B dt dt dt 1 2 1 1 1 2 2 1 2 1 1 ( ) ( ) dv dy dy dy M K y y B K y B dt dt dt dt [例2] ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University 模型转化—能控式、能观式状态空间 ( ) ( 1) ( ) ( 1) 1 1 0 1 1 n n n n n n n n y a y a y a y b u b u b u b u 1 0 1 1 1 1 1 ( ) ... ( ) ... n n n n n n n n Y s b s b s b s b U s s a s a s a 1 2 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 n n n u a a a a x x y b a b b a b b a b b a b b u n n n n 0 1 1 0 2 2 0 1 1 0 0 x 0 1 1 1 0 2 2 2 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n a b a b a b a b u a b a b a b a b x x 0 y b u 0 0 . . . 0 1 x 能控式(Controllable canonical form) 能观式(Observable canonical form)
模型转化一对角式状态空间 Y(s)bos"+bs"+..+bs+b U(s) s"+as"+...+an-is+an -P -P2 i- x+ y=[9g2··clnx+bu 6o+ C +9 (s+P)3(s+p)2s+台s+ School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 例3]模型转化 Y(s) 52+8s+15 U(s)s3+7s2+145+8 School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 4
4 ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University 1 0 1 1 1 1 1 ( ) ... ( ) ... n n n n n n n n Y s b s b s b s b U s s a s a s a 1 2 1 1 n 1 n n p p x x u p 1 2 0 1 ... n n y c c c x b u 1 1 1 1 2 3 0 3 2 ( ) ( ) 4 n i i i c c c c b s p s p s p s p 0 1 n i i i c b s p 模型转化— 对角式状态空间 ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University [例 3]模型转化 2 3 2 ( ) 8 15 ( ) 7 14 8 Y s s s U s s s s
模型转换一状态空间toT℉ I文=Ax+Bu sX(s)-x(0)=AX(s)+BU(s) LT y=Cx+Du Y(s)=CX(s)+DU(s) x(0)=0 X(s)=(sI-A)BU(s) G(S)=Y()=C(SI-AB+D U(s) Ys)=「C(sl-A)B+DU(s) D=0 G(s)= Y(s)= adi(sI-A)B U(s) sI-A School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 例4]模型转化 卧 0 0 School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 5
5 ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University 模型转换—状态空间 to TF x = Ax + Bu y Du Cx + LT s s s U s X x AX B ( ) (0) ( ) ( ) Y s s DU s ( ) ( ) ( ) CXx(0) 0 1 ( ) ( ) ( ) s s U s X I A B 1 Y s s D U s ( ) ( ) ( ) C I A B 1 ( ) ( ) ( ) ( ) Y s G s s D U s C I A B D 0 ( ) ( ) ( ) ( ) Y s adj s G s U s s I A C B I A ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University 1 1 2 2 0 1 0 1 x x k b u x x M M M 1 2 1 0 x y x [例 4]模型转化
复习]矩阵的线性变换 -PAPHPP-P-APP(I-A)P P-1I(I-A)川P曰P-1IPI(-A)I P-PI(I-A)月(2I-A)川 文=Ar+Bu x=Pz y=Cx+Du School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fal12015 能控式的对角化 0 1 0 0 0 0 0 =Ax+Bu= x+ y=Cx 0 0 0 1 -a.-a.1-an-2 4 -41 1 1… 11 P= 房 店 … 无- 「0… 0 A=PAP= 0 B=PB C=CP 0 0 School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 6
6 ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University [复习]矩阵的线性变换 x Ax Bu y Cx Du x Pz | | | | | ( ) | -1 -1 -1 -1 I P AP P P P AP P I - A P | || ( ) || | | || || ( ) | -1 -1 P I - A P P P I - A | || ( ) | | ( ) | -1 P P I - A I - A ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University 能控式的对角化 1 2 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 n n n u u a a a a x Ax B x 1 2 2 2 2 1 2 1 1 1 1 2 1 1 1 n n n n n n P y Cx n 0 0 0 0 0 0 ~ 2 1 -1 A P AP B P B ~ -1 C CP ~
[例4]能控式的对角化 0 1 01 001x+0u y=[00 -6-11-66 School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 齐次状态方程&状态转移矩阵 文=Ax+Bu (t)=ax(t) u(t)=0 x(t)=e"x(0) x(t)=Ax(t)) x(t)=e4x(0) e=1+a++…+a+…=2a 21 k! e=I+At+ 21 k! 该无穷级数在有限时间是绝对收敛的 School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 7
7 ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University [例4 ] 能控式的对角化 u 6 0 0 6 11 6 0 0 1 0 1 0 x x y 1 0 0x ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University 齐次状态方程& 状态转移矩阵 x Ax B u u t( ) 0 x Ax ( ) ( ) t t ( ) (0) at x t e x x t ax t ( ) ( ) ( ) (0) t t e A x x 2 2 ! 1 1 1 2! ! ! At k k k k k e I At A t A t A t k k 2 2 0 1 1 1 1 2! ! ! at k k k k k e at a t a t a t k k 该无穷级数在有限时间是绝对收敛的
齐次状态方程&状态转移矩阵(续) e40=I If AB=BA e+)=e·e4 lev]"=err e4-)e4-)=e-) If AB+BA de“=Ae d [e"=e e 0 0 School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fal12015 齐次状态方程&状态转移矩阵(续) (t)=Ax(t) |r sX(s)-x(0)=AX(s) X(s)=(sI-A)x(0) IT x(0=L[X(s=E[(sl-A)x(0)] x(①)=e"xo =[(sl-A1x(0) e4=L-[(sI-A)] School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 8
8 ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University d t t e e dt A A A 1 2 1 2 t t t t e e e A A A ( )1 [ ]t t e e A A If AB=BA If AB≠BA -1 e e P AP A P P -1 1 2 0 0 n A 1 2 0 0 n t t At t e e e e e A0 I t n n t [ ] e e A A t t t t t t e e e 2 1 1 0 2 0 A( ) A A ( ) ( ) 齐次状态方程& 状态转移矩阵(续) ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University x Ax ( ) ( ) t t s s s X x AX ( ) (0) ( ) LT ( ) ( ) (0) s s X I A x 1 -1 -1 1 ( ) ( ) ( ) (0) - t L s = L s - x X I A x ILT -1 L s - ( ) (0) 1 I A x 0 ( ) t t e A x x [( ) ] t e L s A I A 1 1 齐次状态方程& 状态转移矩阵(续)
[例5-1]状态转移矩阵求取 4[ e4 =L[(SI-A)] School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 [例5-2]状态转移矩阵求取 n! School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 9
9 ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University 0 1 = -2 -3 A [( ) ] t e L s A I A 1 1 [例5-1] 状态转移矩阵求取 ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University 0 1 = -2 -3 A 1 1 2 2 2 ! t n n e t t t n A I A A A ! [例5-2] 状态转移矩阵求取
[例5-3]状态转移矩阵求取 A=pAp 对角线形式 4[ ePAP=plep e==pe p School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 [例5-4]状态转移矩阵求取* 凯莱-哈密顿定理(Cayley-Hamilton theorem) e"=a,0)1+a0)A+.…+an0A [1元 a(t) a(t) School of Mechanical Engineering ME369-lecture 9.1 Shanghai Jiao Tong University Fall 2015 10
10 ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University 0 1 = -2 -3 A -1 e e P AP A P P -1 1 t t t 1 1 e e e A p Ap A p p p p ˆ 1 A p Ap 对角线形式 [例5-3] 状态转移矩阵求取 ME369-lecture 9.1 Fall 2015 School of Mechanical Engineering Shanghai Jiao Tong University 0 1 = -2 -3 A 凯莱-哈密顿定理(Cayley-Hamilton theorem) 0 1 ( ) ( ) ( ) t n n e a t a t a t A I A A 1 1 1 2 1 2 1 0 1 1 1 2 1 1 2 2 2 2 1 1 ( ) 1 ( ) 1 ( ) 1 n n t n t n t n n n n a t e a t e a t e [例5-4] 状态转移矩阵求取*