当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

厦门大学:《结构化学 Structural Chemistry》课程教学资源(电子教案)Chapter 05 The structure of polyatomic molecules

资源类别:文库,文档格式:PDF,文档页数:51,文件大小:1.51MB,团购合买
§5.1 Theory of hybrid orbital and atomic orbital hybridization §5.2 Valence Shell Electron-Pair Repulsion (VSEPR) Model §5.3 Hückel molecular orbital theory and conjugated system §5.4 Delocalized molecular orbital theory §5 The symmetry of molecular orbital and symmetry rules for molecular reactions
点击下载完整版文档(PDF)

Chapter 5 Stucture of polyatomic molecules (A) 5.1 Theory of hybrid orbital and atomic orbital hybridization 1.Theory of hybrid orbital Two Theories of Bonding MOLECULAR ORBITAL THEORY valence electrons are delocalized valence electrons spread over entire molecule. VALENCE BOND THEORY 。 valence electrons are localized between atoms (or are lone pairs). half-filled atomic orbitals overlap to form bonds

Chapter 5 Stucture of polyatomic molecules (A) MOLECULAR ORBITAL THEORY MOLECULAR ORBITAL THEORY • valence electrons are valence electrons are delocalized delocalized • valence electrons spread over entire molecule. valence electrons spread over entire molecule. Two Theories of Bonding Two Theories of Bonding VALENCE BOND THEORY VALENCE BOND THEORY • valence electrons are valence electrons are localized localized between atoms (or are between atoms (or are lone pairs). lone pairs). • half-filled atomic filled atomic orbitals orbitals overlap to form bonds. overlap to form bonds. §5.1 Theory of hybrid orbital and atomic orbital hybridization 1. Theory of hybrid orbital

Central Themes of Valence Bond Theory Basic Principle of Valence Bond Theory:a covalent bond forms when the orbitals from two atoms overlap and a pair of electrons occupies the region between the nuclei. 1)Opposing spins of the electron pair. 2)Maximum overlap of bonding orbitals. 3)Hybridization of atomic orbitals. Pauling proposed that the valence atomic orbitals in the molecule are different from those in the isolated atoms.We call this Hybridization! Why do atomic orbital need hybridization? H20 Each o bond arises from the overlap of an H1s orbital with one of the O2p orbitals.This ●H model suggests that the bond angle should be9o°,which is significantly different from the experimental value. Use of p-orbitals

Central Themes of Valence Bond Theory 1) Opposing spins of the electron pair. 2) Maximum overlap of bonding orbitals. 3) Hybridization of atomic orbitals. Pauling proposed that the valence atomic orbitals in the molecule are different from those in the isolated atoms. We call this Hybridization! Basic Principle of Valence Bond Theory: a covalent bond forms when the orbitals from two atoms overlap and a pair of electrons occupies the region between the nuclei. Use of p - orbitals H2O Why do atomic orbital need hybridization? Each σ bond arises from the overlap of an H1s orbital with one of the O2p orbitals. This model suggests that the bond angle should be 90°, which is significantly different from the experimental value

P 104.5 b1 b2 H2O Why do atomic orbital need hybridization? CH4 sp3 109.5 109.5° 109.5 109.5 Carbon has four valence electrons four electrons that are typically involved in bond formation. For carbon atoms bonded to four other atoms,experimental evidence suggested that all of the bonds have similar molecular orbitals

Px Py a b 104.5 b1 b2 H2O • Carbon has four valence electrons – four electrons that are typically involved in bond formation. • For carbon atoms bonded to four other atoms, experimental evidence suggested that all of the bonds have similar molecular orbitals. CH4 Why do atomic orbital need hybridization?

b.How do atomic orbital hybridize? 中n=C中,+C22m+C3中2py+C4中2pr If we begin with n AO's,we must end up with n orbitals after hybridization. All n hybrids are equivalent except for directionality same energy. 2.Construction of hybrid orbitals

b. How do atomic orbital hybridize? h s px py pz c c c c φ = 1 φ2 + 2φ2 + 3 φ2 + 4φ2 If we begin with n AO’s, we must end up with n orbitals after hybridization. All n hybrids are equivalent except for directionality Æ same energy. 2. Construction of hybrid orbitals

a.sp hybridization (linear species) One s and one p AO mix to form a set of two hybrid orbitals. 2s sp hybrid 2Px sp hybrid -+ sp,0=l80°,linear, Normalization and orthogonality 0h2 1V2 s b.sp2 hybridization (trigonal planar) One s and two p(Px and py)AO's mix to form a set of three 30 hybrid orbitals. 1 2 <30! 1 25 h2 sp2,Dh,0=l20°,triangular, f=1.991,=1/3 h

a. sp hybridization (linear species) • One s and one p AO mix to form a set of two hybrid orbitals. ( ) 2 1 ( ) 2 1 2 2 1 2 h s px h s px φ φ φ φ φ φ = − = + sp, θ=180°, linear, Normalization and orthogonality h s px py h s px py h s px 3 2 2 2 2 2 1 2 2 1 6 1 3 1 2 1 6 1 3 1 3 2 3 1 φ φ φ φ φ φ φ φ φ φ φ = − − = − + = + • One s and two p (px and py) AO’s mix to form a set of three hybrid orbitals. b. sp2 hybridization (trigonal planar) sp2, D3h, θ=120°, triangular, f=1.991, α=1/3 φh1 φh2 φh3 x y

=a,,+b,中2x+C,02pmy For equivalent hybridization:the weighting of s orbital in each hybrid orbital is 1/3,and therefore a,=V1/3 中i=V1/34,+b,42m+C,中2py Supposed is parallel to the x-axis and is perpendicular to the y-axis 中n1=V1/30,+b,2m Normalization 中a1=V1/30,+V2/30 中1=V1/30+√21342x 中n=V1/30,+b,2x+C,py Normalization and orthogonality a,2+b2+c,2=1 2 1/3+b,2+c,2-1 a1a2+b,b2+cc2=0 1/3+√2/3b2+0c2=0 b2=-1/6 C2=±V1/2 h2 =V1/3。-1/642x+1/24p =V1/30,-V1/64m-V1/24m

hi i s i px i py a b c φ = φ + φ2 + φ2 For equivalent hybridization: the weighting of s orbital in each hybrid orbital is 1/3, and therefore = 1/ 3 i a Supposed φh1 is parallel to the x-axis and is perpendicular to the y-axis. h s px h s i px b 1 2 1 2 1/ 3 2 / 3 1/ 3 φ φ φ φ φ φ = + = + Normalization hi s i px i py b c 2 2 φ = 1/ 3φ + φ + φ hi s i px i py b c 2 2 φ = 1/ 3φ + φ + φ h1 s 3 2 px φ = 1/ 3φ + 2 / φ Normalization and orthogonality 1/ 3 2 / 3 0 0 1/ 3 1 2 2 2 2 2 2 + + ⋅ = + + = b c b c 0 1 1 2 1 2 1 2 2 2 2 2 2 2 + + = + + = a a b b c c a b c b2 = − 1/ 6 c2 = ± 1/ 2 h2 s 2 px 2 py φ = 1/ 3φ − 1/ 6φ + 1/ 2φ h3 s 2 px 2 py φ = 1/ 3φ − 1/ 6φ − 1/ 2φ

c.sp3 hybrides (tetrahedral) equivalent 1= 2+px+p,+P:] -H hybridization H along (x,y,z) c=1/4 2 22s-n-p,+:/ along (-x,-y,Z) 1 :=2s-Px+P,-P:] along (-x,y,-Z) h4 中n3 s+px -Py-p: 2 One s and 3 p AO's mix to form a set of along (x,-y,-Z) four hybrid sp3 orbitals. CH,SiH,GeHa,PX,SO,PO d.dsp3(sp3d)hybrides (bipyramidal) n3 1 m= 1 =V2Ip.+d:] 0h2= 12 Vlp:-d:] 1 1 S- 3 6 Px 2

H C H H H φh1 φh2 φh4 φh3 z along (-x,-y,z) 2 [ ] 2 1 h px py pz φ = s − − + along (x, y,z) 1 [ ] 2 1 h x y z φ = s + p + p + p along (x,-y,-z) [ ] 2 1 h 4 x y z φ = s + p − p − p along (-x,y,-z) 3 [ ] 2 1 h px py pz φ = s − + − • One s and 3 p AO’s mix to form a set of four hybrid sp3 orbitals. equivalent hybridization α=1/4 c. sp3 hybrides (tetrahedral) − 3− 4 2 4 4 4 4 4 CH , SiH ,GeH , PX , SO , PO P F F F F F h x y h x y h x s p p s p p s p 2 1 6 1 3 1 2 1 6 1 3 1 3 2 3 1 3 2 1 = − − = − + = + φ φ φ φh1 φh2 x y φh3 [ ] 2 1 [ ] 2 1 2 2 5 4 z h z z h z p d p d = − = + φ φ φh4 φh5 z S F F F F d. dsp3 (sp3d) hybrides (bipyramidal)

Square planar:D4h e.dsp2 hybrides (square planar) 中1= 9 d: φn2 h2 中n31 2 2 2 Eg.Ni(CN)2- f.d2sp3 (sp3d2)hybrides (Octahedral) 1 1 0G6+22.+24 V12 11 1 oc=65+12P, d2- 2V12 11 6-2+ -dz 1 11 oc=16-V2P,-2d2 1 0C5 =S十 d2 dd5,PxPyP= √ 1 1 0C6 √6 2P+3

Square planar: D4h 2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 4 3 2 1 h s py x y py x y h s px x y h s px x y h s d d d d − − − − = − − = + − = − + = + + φ φ φ φ φ φ φ φ φ φ φ φ x y x y d 2 2 ,s, p , p − φh1 x y φh3 φh2 φh4 Eg. Ni(CN)4 2- e. dsp2 hybrides (square planar) 5 1 2 3 4 6 x y z 2 3 1 2 1 6 1 5 z z oc = s + p + d 2 2 2 12 1 2 1 2 1 6 1 1 x y z oc = s + px + d − d − 2 2 2 12 1 2 1 2 1 6 1 2 x y z oc = s + py − d − d − 2 2 2 12 1 2 1 2 1 6 1 3 x y z oc = s − px + d − d − 2 2 2 12 1 2 1 2 1 6 1 4 x y z oc = s − py − d − d − 2 3 1 2 1 6 1 6 z z oc = s − p + d x y z z x y d 2 ,d 2 2 ,s, p , p , p − f. d2sp3 (sp3d2) hybrides (Octahedral) F S F F F F F

Hybridization schemes spndm gives a“complete'”set of hybrid orbitals for“any”geometry. sp linear sp2 trigonal planar sp3 tetrahedral sp3d (d,2) trigonal bipyramidal sp3d(d,2-y2) square-based pyramidal sp3d2 octahedral sp2d square planar 3.The angle between two hybrid orbital spn hybridation 4n=Va02、+V1-a42p 中m=Va功,+V1-a,2n ,=Va中,+V1-a,4p whereφnmis 中p=X,中x+y,02py+2,02p

Hybridization schemes spndm gives a “complete” set of hybrid orbitals for “any” geometry. sp octahedral 3d2 sp trigonal bipyramidal 3d (dz 2) square-based pyramidal sp3d(dx 2-y 2) sp square planar 2d sp tetrahedral 3 sp trigonal planar 2 sp linear 3. The angle between two hybrid orbital spn hybridation h 2s 2 p φ = αφ + 1−αφ p j φh j = α j φ2s + 1−α j φ2 pi hi i 2s i 2 φ = α φ + 1−α φ p i px i py i pz x y z i φ = φ + φ2 + φ2 where φpi is

Normalization and orthogonality 0=∫44,dr=∫(Va4+V1-g)(Wa4,+V1-cgn)dr -aaSdr+(1-@)-@)o.dr+0+0 O-aa,+/(1-a)(-@,)cose aa V1-a)0-a) (c0s00,0>90°) Equivalent hybridzation.Example:CH4 i≠0j Non-equivalent hybridzation.Example:CHCl3,CHaCl Equivalent hybridization sp3-hybrides 1 Q= 4 1 aaj 4 1 V1-a,1-a) 3 4 sp3 0=10928" 109.5 109.5° 109.59 109.5

(1 )(1 ) cos 0 (1 )(1 ) cos (1 )(1 ) 0 0 0 ( 1 )( 1 ) 2 2 2 2 i j i j ij i j i j ij i j s i j pi pj hi hj i s i pi j s j pj d d d d α α αα θ αα α α θ αα φ τ α α φ φ τ φ φ τ αφ αφ α φ α φ τ − − =− = + − − = + − − + + = = + − + − ∫ ∫ ∫ ∫ Equivalent hybridzation. Example: CH4 Non-equivalent hybridzation. Example: CHCl3, CH3Cl i j i j α α α α ≠ = (cosθij90°) φ hi φ hj θ ij Normalization and orthogonality sp3 − hybrides 109 28" 3 1 4 3 4 1 (1 )(1 ) cos 4 1 0 = = − = − − − = − = θ α α α α θ α i j i j ij Equivalent hybridization

点击下载完整版文档(PDF)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
共51页,可试读17页,点击继续阅读 ↓↓
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有