第2单元 波粒二象性 必备知识要打牢 抓双基 固本源 F握程度 IBEL ZHISHI YAO DALAO 如识点 光电效应及其规律 相一相 如图13-2-1所示,用紫外光照射不带电的锌板时,发现验电器指针发生了偏转,试 分析验电器指针偏转的原因。 验电器 图13-2-1 [提示]用紫外光照射不带电的锌板时,锌板发生光电效应,射出了光电子,因此锌板 带正电,验电器也就带了正电,引起指针偏转 [记一记] 1.光电效应现象 在光的照射下,金属中的电子从表面逸出的现象,发射出来的电子叫光电子 2.光电效应的产生条件 入射光的频率大于金属的极限频率。 3.用光电管研究光电效应 1)电路如图13-2-2所示。 图13-2-2 (2)光电流与饱和光电流: ①入射光强度:指单位时间内入射到金属表面单位面积上的能量。可以理解为频率一定 时,光强越大,光子数越多
1 第 2 单元 波粒二象性 光电效应及其规律 [想一想] 如图 13-2-1 所示,用紫外光照射不带电的锌板时,发现验电器指针发生了偏转,试 分析验电器指针偏转的原因。 图 13-2-1 [提示] 用紫外光照射不带电的锌板时,锌板发生光电效应,射出了光电子,因此锌板 带正电,验电器也就带了正电,引起指针偏转。 [记一记] 1.光电效应现象 在光的照射下,金属中的电子从表面逸出的现象,发射出来的电子叫光电子。 2.光电效应的产生条件 入射光的频率大于金属的极限频率。 3.用光电管研究光电效应 (1)电路如图 13-2-2 所示。 图 13-2-2 (2)光电流与饱和光电流: ①入射光强度:指单位时间内入射到金属表面单位面积上的能量。可以理解为频率一定 时,光强越大,光子数越多
②光电流:指光电子在电路中形成的电流。光电流有最大值,未达到最大值以前,其大 小和光强、电压都有关,达到最大值以后,光电流和光强成正比 ③饱和光电流:指在一定频率与强度的光照射下的最大光电流,饱和光电流不随电路中 电压的增大而增大。 4.光电效应规律 (1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效 应 (2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。 (3)光电效应的发生几乎是瞬时的,一般不超过10°s (4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比 [试一试] 1.关于光电效应的规律,下列说法中正确的是() A.只有入射光的波长大于该金属的极限波长,光电效应才能产生 B.光电子的最大初动能跟入射光强度成正比 C.发生光电效应的反应时间一般都大于10-7 D.发生光电效应时,单位时间内从金属内逸出的光电子数目与入射光强度成正比 解析:选D由E=h=h知,当入射光波长小于极限波长时,发生光电效应,故A错。 由Ek=h-W知,最大初动能由入射光频率决定,与光强度无关,故B错。发生光电效应 的时间一般不超过10-9s,故C错 即识点三 爱因斯坦光电效应方程 [记一记] 1.光子说 在空间传播的光不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量E 2.光电效应方程 (1)表达式:h=Ek+W0或Ek=h-Wo (2)物理意义:金属表面的电子吸收一个光子获得的能量是h,这些能量的一部分用来 克服金属的逸出功W0,剩下的表现为逸出后电子的最大初动能Ek n-。 [试一试] 2.某金属的逸出功为2.3eV,这意味着() A.这种金属内部的电子克服原子核引力做23eV的功即可脱离表面
2 ②光电流:指光电子在电路中形成的电流。光电流有最大值,未达到最大值以前,其大 小和光强、电压都有关,达到最大值以后,光电流和光强成正比。 ③饱和光电流:指在一定频率与强度的光照射下的最大光电流,饱和光电流不随电路中 电压的增大而增大。 4.光电效应规律 (1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效 应。 (2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。 (3)光电效应的发生几乎是瞬时的,一般不超过 10-9 s。 (4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比。 [试一试] 1.关于光电效应的规律,下列说法中正确的是( ) A.只有入射光的波长大于该金属的极限波长,光电效应才能产生 B.光电子的最大初动能跟入射光强度成正比 C.发生光电效应的反应时间一般都大于 10-7 s D.发生光电效应时,单位时间内从金属内逸出的光电子数目与入射光强度成正比 解析:选 D 由 ε=hν=h c λ 知,当入射光波长小于极限波长时,发生光电效应,故 A 错。 由 Ek=hν-W 知,最大初动能由入射光频率决定,与光强度无关,故 B 错。发生光电效应 的时间一般不超过 10-9 s,故 C 错。 爱因斯坦光电效应方程 [记一记] 1.光子说 在空间传播的光不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量 E =hν。 2.光电效应方程 (1)表达式:hν=Ek+W0 或 Ek=hν-W0 (2)物理意义:金属表面的电子吸收一个光子获得的能量是 hν,这些能量的一部分用来 克服金属的逸出功 W0,剩下的表现为逸出后电子的最大初动能 Ek= 1 2 mv 2。 [试一试] 2.某金属的逸出功为 2.3 eV,这意味着( ) A.这种金属内部的电子克服原子核引力做 2.3 eV 的功即可脱离表面
B.这种金属表层的电子克服原子核引力做23eV的功即可脱离表面 C.要使这种金属有电子逸出,入射光子的能量必须大于23eV D.这种金属受到光照时若有电子逸出,则电子离开金属表面时的动能至少等于23eV 解析:选BC逸出功是指原子的外层电子脱离原子核克服引力所做的功,B对;由发 生光电效应的条件知C对。 知识点 光的波粒二象性 想一想] 光能发生干涉、衍射现象,说明光具有波动性,光电效应现象又说明光具有粒子性,那 么光是粒子还是波? 提示:光不是传统意义上的粒子,也不是传统意义上的波,光既具有波动性,又具有粒 子性,光具有波粒二象性 记一记] (1)光的干涉、衍射、偏振现象证明光具有波动性 (2)光电效应、康普顿效应说明光具有粒子性 3)光既具有波动性,又具有粒子性,称为光的波粒二象性。 3.下列有关光的波粒二象性的说法中,正确的是() A.有的光是波,有的光是粒子 B.光子与电子是同样的一种粒子 C.光的波长越长,其波动性越显著:波长越短,其粒子性越显著 D.大量光子的行为往往显示出粒子性 解析:选C一切光都具有波粒二象性,光的有些行为(如干涉、衍射未表现出波动性 光的有些行为(如光电效应)表现出粒子性,所以,不能说有的光是波,有的光是粒子。 光子与电子都是微观粒子,都具有波粒二象性,但电子是实物粒子,有静止质量,光子 不是实物粒子,没有静止质量;电子是以实物形式存在的物质,光子是以场形式存在的物 质,所以不能说光子与电子是同样的一种粒子。 光的波粒二象性的理论和实验表明,大量光子的行为表现出波动性,个别光子的行为表 现出粒子性。光的波长越长,衍射性越好,即波动性越显著;光的波长越短,其光子的能量 越大,个别或少数光子的作用就足以引起光接收装置的反应,所以其粒子性就很显著
3 B.这种金属表层的电子克服原子核引力做 2.3 eV 的功即可脱离表面 C.要使这种金属有电子逸出,入射光子的能量必须大于 2.3 eV D.这种金属受到光照时若有电子逸出,则电子离开金属表面时的动能至少等于 2.3 eV 解析:选 BC 逸出功是指原子的外层电子脱离原子核克服引力所做的功,B 对;由发 生光电效应的条件知 C 对。 光的波粒二象性 [想一想] 光能发生干涉、衍射现象,说明光具有波动性,光电效应现象又说明光具有粒子性,那 么光是粒子还是波? 提示:光不是传统意义上的粒子,也不是传统意义上的波,光既具有波动性,又具有粒 子性,光具有波粒二象性。 [记一记] (1)光的干涉、衍射、偏振现象证明光具有波动性。 (2)光电效应、康普顿效应说明光具有粒子性。 (3)光既具有波动性,又具有粒子性,称为光的波粒二象性。 [试一试] 3.下列有关光的波粒二象性的说法中,正确的是( ) A.有的光是波,有的光是粒子 B.光子与电子是同样的一种粒子 C.光的波长越长,其波动性越显著;波长越短,其粒子性越显著 D.大量光子的行为往往显示出粒子性 解析:选 C 一切光都具有波粒二象性,光的有些行为(如干涉、衍射)表现出波动性, 光的有些行为(如光电效应)表现出粒子性,所以,不能说有的光是波,有的光是粒子。 光子与电子都是微观粒子,都具有波粒二象性,但电子是实物粒子,有静止质量,光子 不是实物粒 子,没有静止质量;电子是以实物形式存在的物 质,光子是以场形式存在的物 质,所以不能说光子与电子是同样的一种粒子。 光的波粒二象性的理论和实验表明,大量光子的行为表现出波动性,个别光子的行为表 现出粒子性。光的波长越长,衍射性越好,即波动性越显著;光的波长越短,其光子的能量 越大,个别或少数光子的作用就足以引起光接收装置的反应,所以其粒子性就很显著
综上所述,本题应选C项。 高频考点要通关 抓考点 攻重点 得拔高分 掌握程度 AOPIN KAODIAN YAO TONGGUAN 对光电效应规律的理解 1光电效应的研究思路 (1)两条线索: ∫强度—决定着每秒钟光源发射的光了数 定着每个光子的能量E=hv 每秒钟逸出的光电子数—决定着光电流的大小 光电孔(光电子逸出后的最大初动能1m (2)两条对应关系:光强大→光子数目多→发射光电子多→光电流大 光子频率高→光子能量大→光电子的最大初动能大 2.对光电效应规律的解释 对应规律 对规律的产生的解释 电子吸收光子能量后,一部分克服阻碍作用做功,剩余部分转 光电子的最大初动能随着入 化为光电子的初动能,只有直接从金属表面飞出的光电子才具 射光频率的增大而增大,与 有最大初动能,对于确定的金属,W0是一定的,故光电子的 入射光强度无关 最大初动能只随入射光的频率增大而增大 光电效应具有瞬时性「光照射金属时,电子吸收一个光子的能量后,动能立即增大, 不需要能量积累的过程 光较强时饱和电流大元较强时,包含的光子数较多,照射金属时产生的光电子较多, 因而饱和电流较大 [例1]关于光电效应,下列说法正确的是() A.极限频率越大的金属材料逸出功越大 B.只要光照射的时间足够长,任何金属都能产生光电效应 C.相同频率的光照射不同金属,则从金属表面出来的光电子的最大初动能越大,这种 金属的逸出功越小 D.入射光的光强一定时,频率越高,单位时间内逸出的光电子数就越多 审题指导 解答本题时应注意以下三个方面: (1)光电效应的瞬时性(10°s)及产生条件
4 综上所述,本题应选 C 项。 对光电效应规律的理解 1.光电效应的研究思路 (1)两条线索: (2)两条对应关系:光强大→光子数目多→发射光电子多→光电流大; 光子频率高→光子能量大→光电子的最大初动能大。 2.对光电效应规律的解释 对应规律 对规律的产生的解释 光电子的最大初动能随着入 射光频率的增大而增大,与 入射光强度无关 电子吸收光子能量后,一部分克服阻碍作用做功,剩余部分转 化为光电子的初动能,只有直接从金属表面飞出的光电子才具 有最大初动能,对于确定的金属,W0 是一定的,故光电子的 最大初动能只随入射光的频率增大而增大 光电效应具有瞬时性 光照射金属时,电子吸收一个光子的能量后,动能立即增大, 不需要能量积累的过程 光较强时饱和电流大 光较强时,包含的光子数较多,照射金属时产生的光电子较多, 因而饱和电流较大 [例 1] 关于光电效应,下列说法正确的是( ) A.极限频率越大的金属材料逸出功越大 B.只要光照射的时间足够长,任何金属都能产生光电效应 C.相同频率的光照射不同金属,则从金属表面出来的光电子的最大初动能越大,这种 金属的逸出功越小 D.入射光的光强一定时,频率越高,单位时间内逸出的光电子数就越多 [审题指导] 解答本题时应注意以下三个方面: (1)光电效应的瞬时性(10-9 s)及产生条件
(2)逸出功的计算方法及决定因素。 (3)光电子数目的决定因素 [尝试解题] 由Wo=hw可知A正确。照射光的频率大于极限频率时才能发生光电效应,即B错。 由Ek=加-W可知C对。光强定时,频率越高,则光子的能量越大,单位时间内射向金 属的光子数目少,逸出的光电子数少,故D错 答案]AC 规律总结 光电效应实质及发生条件 (1)光电效应的实质是金属中的电子获得能量后逸出金属表面,从而使金属带上正电。 (2)能否发生光电效应,不取决于光的强度,而是取决于光的频率。只要照射光的频率 大于该金属的极限频率,无论照射光强弱,均能发生光电效应 光电效应方程的应用 1Ek-v曲线 如图13-2-3甲所示的是光电子最大初动能Ek随入射光频率的变化曲线。由Ek=h 一可知,横轴上的截距是金属的截止频率或极限频率,纵轴上的截距是金属的逸出功的 负值,斜率为普朗克常量 图13-2-3 2.-U曲线 如图乙所示的是光电流强度随光电管两极板间电压U的变化曲线,图中l为饱和光 电流,L为遏止电压 3.利用光电效应分析问题,应把握的三个关系 (1)爱因斯坦光电效应方程Ek=h-W0。 (2)光电子的最大初动能Ek可以利用光电管用实验的方法测得,即Ek=eU,其中U是 遏止电压。 (3)光电效应方程中的W为逸出功,它与极限频率v的关系是W0=hv 例2](1)研究光电效应的电路如图13-2-4所示。用频率相同、强度不同的光分别
5 (2 )逸出功的计算方法及决定因素。 (3)光电子数目的决定因素。 [尝试解题] 由 W0=hν0 可知 A 正确。照射光的频率大于极限频率时才能发生光电效应,即 B 错。 由 Ek=hν-W0 可知 C 对。光强一定时,频率越高,则光子的能量越大,单位时间内射向金 属的光子数目少,逸出的光电子数少,故 D 错。 [答案] AC 光电效应实质及发生条件 ( 1)光电效应的实质是金属中的电子获得能量后逸出金属表面,从而使金属带上正电。 (2)能否发生光电效应,不取决于光的强度,而是取决于光的频率。只要照射光的频率 大于该金属的极限频率,无论照射光强弱,均能发生光电效应。 光电效应方程的应用 1.Ek-ν 曲线 如图 13-2-3 甲所示的是光电子最大初动能 Ek 随入射光频率 ν 的变化曲线。由 Ek=hν -W0 可知,横轴上的截距是金属的截止频率或极限频率,纵轴上的截距是金属的逸出功的 负值,斜率为普朗克常量。 图 13-2-3 2.I-U 曲线 如图乙所示的是光电流强度 I 随光电管两极板间电压 U 的变化曲线,图中 Im为饱和光 电流,Uc为遏止电压。 3.利用光电效应分析问题,应把握的三个关系 (1)爱因斯坦光电效应方程 Ek=hν-W0。 (2)光电子的最大初动能 Ek 可以利用光电管用实验的方法测得,即 Ek=eUc,其中 Uc是 遏止电压。 (3)光电效应方程中的 W0 为逸出功,它与极限频率 νc的关系是 W0=hνc。 [例 2] (1)研究光电效应的电路如图 13-2-4 所示。用频率相同、强度不同的光分别
照射密封真空管的钠极板(阴极K),钠极板发射出的光电子被阳极A吸收,在电路中形成光 电流。下列光电流l与A、K之间的电压UAk的关系图象中,正确的是() 光束 窗口 ① 图13-2-4 强光 弱光 强光 弱光 图13-2-5 (2)钠金属中的电子吸收光子的能量,从金属表面逸出,这就是光电子。光电子从金属 表面逸出的过程中,其动量的大小 (选填“增大”“减小”或“不变”),原因是 (3)已知氢原子处在第一、第二激发态的能级分别为-3.40eV和-1.5leV,金属钠的截 止频率为553×1014H,普朗克常量h=663×10-34Js。请通过计算判断,氢原子从第二 激发态跃迁到第一激发态过程中发出的光照射金属钠板,能否发生光电效应。 [尝试解题] (1)设钠的遏止电压为U,对光电子由动能定理得-eUl=0·5mm2,又由mm2=h W得U= 同种金属的逸出功W是相同的,因此入射光频率相同时其遏止电压U 亦相同,A、B错误。光电效应现象中,光电流的大小与入射光的强度成正比,C正确,D 错误。 (2)钠金属中的电子吸收光子的能量,从金属表面逸出,由于光电子在从金属表面逸出 的过程中,要受到金属表面层中力的阻碍作用(或需要克服逸出功)。所以在光电子从金属表 面逸出的过程中,其动量的大小减小。 (3)氢原子从第二激发态跃迁到第一激发态过程中,放出的光子能量为E=E3ˉE2,代入 数据得E=1.89eV,金属钠的逸出功W=hwo,代入数据得W=23eV,因为E<W0,所以 不能发生光电效应
6 照射密封真空管的钠极板(阴极 K),钠极板发射出的光电子被阳极 A 吸收,在电路中形成光 电流。下列光电流 I 与 A、K 之间的电压 UAK 的关系图象中,正确的是( ) 图 13-2-4 图 13-2-5 (2)钠金属中的电子吸收光子的能量,从金属表面逸出,这就是光电子。光电子从金属 表面逸出的过程中,其动量的大小________(选填“增大”“减小”或“不变”),原因是 ________________________________________________________________________。 (3)已知氢原子处在第一、第二激发态的能级分别为-3.40 eV 和-1.51 eV,金属钠的截 止频率为 5.53×1014 Hz,普朗克常量 h=6.63×10-34 J·s。请通过计算判断,氢原子从第二 激发态跃迁到第一激发态过程中发出的光照射金属钠板,能否发生光电效应。 [尝试解题] (1)设钠的遏止电压为 Uc,对光电子由动能定理得-eUc=0- 1 2 mvm 2,又由1 2 mvm 2=hν- W0 得 Uc= hν-W0 e ,同种金属的逸出功 W0 是相同的,因此入射光频率相同时其遏止电压 Uc 亦相同,A、B 错误。光电效应现象中,光电流的大小与入射光的强度成正比,C 正确,D 错误。 (2)钠金属中的电子吸收光子的能量,从金属表面逸出,由于光电子在从金属表面逸出 的过程中,要受到金属表面层中力的阻碍作用(或需要克服逸出功)。所以在光电子从金属表 面逸出的过程中,其动量的大小减小。 (3)氢原子从第二激发态跃迁到第一激发态过程中,放出的光子能量为 E=E3-E2,代入 数据得 E=1.89 eV,金属钠的逸出功 W0=hν0,代入数据得 W0=2.3 eV,因为 E<W0,所以 不能发生光电效应
「答案](1)C(2)减小光电子从金属表面逸出的过程中要受到金属表面层中力的阻 碍作用(或需要克服逸出功) (3)见解析 规律总结 入射光两要素影响光电效应 (1)入射光的频率决定着能否产生光电效应,以及发生光电效应时光电子的最大初动能 和遏止电压的大小 (2)入射光的强度决定着单位时间内发射出来的光电子数,也即为光电流的强度。 对光的波粒二象性的理解 (1)个别光子的作用效果往往表现为粒子性:大量光子的作用效果往往表现为波动性 (2)频率越低波动性越显著,越容易看到光的干涉和衍射现象:频率越高粒子性越显 越不容易看到光的干涉和衍射现象,贯穿本领越强。 (3)光在传播过程中往往表现出波动性:在与物质发生作用时往往表现为粒子性 (4)由光子的能量=h,光子的动量p=表达式也可以看出,光的波动性和粒子性并不 矛盾:表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量—频率v 和波长λ。由以上两式和波速公式c=Av还可以得出:=pco 例3用很弱的光做双缝干涉实验,把入射光减弱到可以认为光源和感光胶片之间不 可能同时有两个光子存在,如图13-2-6所示是不同数量的光子照射到感光胶片上得到的 照片。这些照片说明 書鑫 7个电子 3000个电子 70000个电子 图13-2-6 A.光只有粒子性没有波动性 B.光只有波动性没有粒子性 C.少量光子的运动显示波动性,大量光子的运动显示粒子性 少量光子的运动显示粒子性,大量光子的运动显示波动性 审题指导] 光具有波粒二象性,光子表现为波动性,并不否认光具有粒子性 解析]少量光子落在胶片上,落点位置不确定,说明少量光子的运动显示粒孑性,大 量光子落在胶片上,岀现了干涉条纹,呈现岀波动性规律,说明大量光子的运动显示波动性
7 [答案] (1)C (2)减小 光电子从金属表面逸出的过程中要受到金属表面层中力的阻 碍作用(或需要克服逸出功) (3)见解析 入射光两要素影响光电效应 (1)入射光的频率决定着能否产生光电效应,以及发生光电效应时 光电子的最大初动能 和遏止电压的大小。 (2)入射光的强度决定着单位时间内发射出来的光电子数,也即为光电流的强度。 对光的波粒二象性的理解 (1)个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性。 (2)频率越低波动性越显著,越容易看到光的干涉和衍射现象;频率越高粒子性越显著, 越不容易看到光的干涉和衍射现象,贯穿本领越强。 (3)光在传播过程中往往表现出波动性;在与物质发生作用时往往表现为粒子性。 (4)由光子的能量 ε=hν,光子的动量 p= h λ 表达式也可以看出,光的波动性和粒子性并不 矛盾:表示粒子性的 粒子能量和动量的计算式中都含有表示波的特征的物理量——频率 ν 和波长 λ。由以上两式和波速公式 c=λν 还可以得出:ε=pc。 [例 3] 用很弱的光做双缝干涉实验,把入射光减弱到可以认为光源和感光胶片之间不 可能同时有两个光子存在,如图 13-2-6 所示是不同数量的光子照射到感光胶片上得到的 照片。这些照片说明 图 13-2-6 A.光只有粒子性没有波动性 B.光只有波动性没有粒子性 C.少量光子的运动显示波动性,大量光子的运动显示粒子性 D.少量光子的运动显示粒子性,大量光子的运动显示波动性 [审题指导] 光具有波粒二象性,光子表现为波动性,并不否认光具有粒子性。 [解析] 少量光子落在胶片上,落点位置不确定,说明少量光子的运动显示粒子性,大 量光子落在胶片上,出现了干涉条纹,呈现出波动性规律,说明大量光子的运动显示波动性
但不能说光只具有粒子性或只具有波动性,故只有D正确 「答案]D 【规律总结 (1)我们平时所看到的宏观物体,其运动时,我们看不出它们的波动性来,但也有一个 波长与之对应。例如飞行子弹的波长约为10-34m (2)波粒二象性是微观粒子的特殊规律,一切微观粒子都存在波动性;宏观物体也存在 波动性,只是波长太小,难以观测。 (3)德布罗意波也是概率波,衍射图样中的亮圆是电子落点概率大的地方,但概率的大 小受波动规律的支配
8 但不能说光只具有粒子性或只具有波动性,故只有 D 正确。 [答案] D (1)我们平时所看到的宏观物体,其运动时,我们看不出它们的波动性来,但也有一个 波长与之对应。例如飞行子弹的波长约为 10-34 m。 (2)波粒二象性是微观粒子的特殊规律,一切微观粒子都存在波动性;宏观物体也存在 波动性,只是波长太小,难以观测。 (3)德布罗意波也是概率波,衍射图样中的亮圆是电子落点概率大的地方,但概率的大 小受波动规律的支配