当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.7)偏导数在几何上的应用

资源类别:文库,文档格式:PPT,文档页数:19,文件大小:1.58MB,团购合买
一、空间曲线的切线与法平面 二、曲面的切平面与法线
点击下载完整版文档(PPT)

第七节偏导数在几何上的应用 、空间曲线的切线与法平面 曲面的切平面与法线

第七节 偏导数在几何上的应用 一、空间曲线的切线与法平面 二、曲面的切平面与法线

、空间曲线的切线与法平面 x=o(t) 设空间曲线的方程1y=v()(1) z=(t) (1)式中的三个函数均可导 M 设M(x,y,),对应于t=4; MAx + Ax, y +Ay, zo +Az) 对应于t=+A 上一页下一页返回

o z y x (1)式中的三个函数均可导. M  . ( , , ) 0 0 0 0 t t t M x x y y z z = + D  + D + D + D 对应于 ( , , ), ; 0 0 0 0 设 M x y z 对应于 t = t  M 设空间曲线的方程 (1) ( ) ( ) ( )      = = = z t y t x t    1一、空间曲线的切线与法平面

割线MM的方程为 M x-xo y=yo 3-30 M △v △ △7 y 考察割线趋近于极限位置—切线的过程 上式分母同除以△t, x-xo y=yo 3-0 △ △y △t △t 上一页下一页返回

考察割线趋近于极限位置——切线的过程 z z z y y y x x x D  = D  = D  0 0 0 Dt Dt Dt 上式分母同除以 Dt, o z y x M  割线  M M M 的方程为 , 0 0 0 z z z y y y x x x D  = D  = D 

当M楼M,即Δ→>0时, 曲线在M处的切线方程 X-x0y-y03-3 o(to y(to (to) 切向量:切线的方向向量称为曲线的切向量 T={φ(tn),y(t),(t)} 法平面:过M点且与切线垂直的平面 p(t0x-x0)+y(t0)(y-yo)+o(t0)(x-a)=0 上一页下一页返

当M M,即Dt 0时 , 曲线在M处的切线方程 . ( ) ( ) ( ) 0 0 0 0 0 0 t z z t y y t x x    =  =  切向量:切线的方向向量称为曲线的切向量. T = (t 0 ), (t 0 ),(t 0 )  法平面:过M点且与切线垂直的平面. ( )( ) ( )( ) ( )( ) 0  t 0 x  x0 + t 0 y  y0 + t 0 z  z0 =  

例1求曲线:x=,e" cosudu,y=2nt +cost,z=1+e”在t=0处的切线和法平面方程 解当t=0时,x=0,y=1,z x'=e cost, y'=2 cost-sint, z'=3e →x(0)=1,y(0)=2,z(0)=3, 切线方程x-0y-12x-2 2 法平面方程x+2(y-1)+3(z-2)=0, x+2y+3x-8=0 上一页下一页返回

. 解 当t = 0时,x = 0, y =1,z = 2, x e cost, t  = y = 2cost  sin t, 3 , 3t z  = e  x(0) =1, y(0) = 2, z (0) = 3, 切线方程 , 3 2 2 1 1 0  =  = x  y z 法平面方程 x + 2( y 1) + 3(z  2) = 0, +cost, t z e 3 =1 + 在t =0处的切线和法平面方程 例1 求曲线G: ,y =2sint  = t u x e udu 0 cos 即 x + 2 y + 3z  8 = 0

1空间曲线方程为y=yp(x) =y(x) 在M(x0,%,)处 切线方程为 x-xo y-y 法平面方程为 (x-x)+p(x0)(y-y0)+v(x0)(x-3)=0 上一页下一页返回

1.空间曲线方程为 , ( ) ( )    = = z x y x   ( , , ) , 在M x0 y0 z0 处 , 1 ( ) ( ) 0 0 0 0 0 x z z x x x y y   =  =  ( ) ( )( ) ( )( ) 0. x  x0 + x0 y  y0 + x0 z  z0 = 法平面方程为 切线方程为

3.空间曲线方程为 ∫F(x,yz)=0 IG(x, y,z)=0 X- z-Z 切线方程为 FFFF.F,F GG GG gG J zo 4 0 y 法平面方程为 x-x)+ (y-y)+ GG GG GG 0 y|0 =0 上一页下一页返回

3.空间曲线方程为 , ( , , ) 0 ( , , ) 0    = = G x y z F x y z 切线方程为 , 0 0 0 0 0 0 x y x y z x z x y z y z G G F F z z G G F F y y G G F F x x  =  =  法平面方程为 0. ( ) ( ) ( ) 0 0 0 0 0 0 =  +  + z  z G G F F y y G G F F x x G G F F x y x y z x z x y z y z

例2求曲线x2+y2+x2=6,x+y+z=0在 点(1,-2,1)处的切线及法平面方程 解1直接利用公式; 解2将所给方程的两边对求导并移项,得 中y,d dy z-d y:+Z dx y-z dy dz d x dx dx y-z 上一页下一贡返回

例2 求曲线 6 2 2 2 x + y + z = ,x + y + z = 0在 点(1,2, 1)处的切线及法平面方程. 解 1 直接利用公式 ; 解 2 将所给方程的两边对x求导并移项,得      + =  + =  1 dx dz dx dy x dx dz z dx dy y  , y z z x dx dy   = , y z x y dx dz   =

dy dz 0 dx (1,-2,1) 由此得切向量T={1,0,-1} x-1y+2z-1 所求切线方程为 0 法平面方程为(x-1)+0·(y+2)-(z-1)=0, →x-z=0 上一页下一页返回

由此得切向量 T = {1, 0,1},  所求切线方程为 , 1 1 0 2 1 1   = + = x  y z 法平面方程为(x 1) + 0 ( y + 2)  (z 1) = 0, x  z = 0 0, (1, 2, 1) = dx  dy  1, (1, 2, 1) =  dx  dz

、曲面的切平面与法线 设曲面方程为 F(x,y,z)=0 在曲面上任取一条通 过点M的曲线 x=o(t TRy=y(t) z=o(t 曲线在M处的切向量T={y(t0),y(t,(t)} 上一页下一贡返回

设曲面方程为 F(x, y,z) = 0 { ( ), ( ), ( )}, 0 0 0 T =  t  t  t  曲线在M处的切向量 在曲面上任取一条通 过点M的曲线 , ( ) ( ) ( ) :      = = = G z t y t x t    n  T  M 二、曲面的切平面与法线

点击下载完整版文档(PPT)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
共19页,试读已结束,阅读完整版请下载
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有