Fubini定理 设f(xy)在区域R上连续R={xy)a≤xbCy≤小 ∫x,y4A=xd=门x,ydrb 考虑函数z=f(Xy)与平行于坐标平面的平面所围成的体的 体积V
Fubini定理 • 设f(x,y)在区域R上连续, 则 考虑函数z=f(x,y)与平行于坐标平面的平面所围成的体的 体积V
Fubini定理 用垂直于x轴的平面去截,设截面面积是A(x), ∫A()dx A(x)=f(x, y)dy 所以了f(xy=V=4(dx=(xy)
Fubini定理 • 用垂直于x轴的平面去截,设截面面积是A(x), 则 而 所以
Fubini定理 同理,用垂直于y轴的平面去截,则得 f(x,y)dA=f(x, y)dx dy
Fubini定理 • 同理,用垂直于y轴的平面去截,则得