免费下载网址htt:jiaoxuesu.ysl168.com 二次函数y=a(x-h)2+k的图象和性质 第2课时二次函数y=a(x-h)2的图象和性质 教学自你 1.会画二次函数y=a(x-h)2的图象 2.掌握二次函数y=a(x-h)2的性质,并会灵活应用 【重点难点】 1.会画二次函数y=a(x-h)2的图象 2.掌握二次函数y=a(x-h)2的性质,并且会灵活应用. 教学内容 【新课导入】 1.y=ax2+k的图象是通过y=ax2的图象上下平移得到的 2.y=a(x-h)2的图象与y=ax2的图象有何联系,此函数的图象有什么特征? 【课堂探究】 、二次函数y=a(x-h)2的图象及性质 1.在同一直角坐标系中,画出下列函数的图象,并指出它们的开口方向、对称轴和顶点坐标 解:描点、连线,画出这三个函数的图象,如图所示 /” 它们的开口方向都向上;对称轴分别是y轴、直线x=2和直线x=2;顶点坐标分别是 (0,0),(-2,0),(2,0) 2.(1)在同一直角坐标系中,函数y=(x+2)2的图象与函数y=-x2的图象有何关系? (2)不画函数的图象,你能说出函数y=-(x+2)2图象的开口方向、对称轴和顶点坐标吗? 解:(1)函数y=-(x+2)2的图象可以看作是将函数y=-x2的图象向左平移2个单位得到的; (2)函数y=-(x+2)2的图象开口向下,对称轴是直线x=-2,顶点坐标是(-2,0) 二、二次函数y=a(x-h)2图象的平移 3.将抛物线y=ax2向左平移后所得新抛物线的顶点横坐标为-2,且新抛物线经过点(1,3),则 a的值为 4.抛物线y=(x+2)2和抛物线y=(x-2)2分别是由抛物线y=x2向左、向右平移两个单位得到的 如果要得到抛物线y=-(x-4)2与y=-(x+7)2,应将抛物线y=-x2作怎样的平移? 解:抛物线y=-x2向右平移4个单位可得到抛物线y=-(x-4)2,抛物线y=-x2向左平移7个单位 可得到抛物线y=-(x+7)2 板书e母 1y=a(x-b)与y=ax,y=ax水的形状都|2y=ax的顶点(0.0)在原点,y=ax+k的顶点 解压密码联系q1119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址; jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 二次函数 y=a(x-h)2 +k 的图象和性质 第 2 课时 二次函数 y=a(x-h)2 的图象和性质 1.会画二次函数 y=a(x-h)2 的图象. 2.掌握二次函数 y=a(x-h)2 的性质,并会灵活应用. 【重点难点】 1.会画二次函数 y=a(x-h)2 的图象. 2.掌握二次函数 y=a(x-h)2 的性质,并且会灵活应用. 【新课导入】 1.y=ax2 +k 的图象是通过 y=ax 2 的图象上下平移得到的. 2.y=a(x-h)2 的图象与 y=ax 2 的图象有何联系,此函数的图象有什么特征? 【课堂探究】 一、二次函数 y=a(x-h)2 的图象及性质 1.在同一直角坐标系中,画出下列函数的图象,并指出它们的开口方向、对称轴和顶点坐标. y=x 2 ,y=(x+2)2 ,y=(x-2)2 , 解:描点、连线,画出这三个函数的图象,如图所示. 它们的开口方向都向上;对称轴分别是 y 轴、直线 x=-2 和直线 x=2;顶点坐标分别是 (0,0),(-2,0),(2,0). 2.(1)在同一直角坐标系中,函数 y=-(x+2)2 的图象与函数 y=-x 2 的图象有何关系? (2)不画函数的图象,你能说出函数 y=-(x+2)2 图象的开口方向、对称轴和顶点坐标吗? 解:(1)函数 y=-(x+2)2 的图象可以看作是将函数 y=-x 2 的图象向左平移 2 个单位得到的; (2)函数 y=-(x+2)2 的图象开口向下,对称轴是直线 x=-2,顶点坐标是(-2,0). 二、二次函数 y=a(x-h)2 图象的平移 3.将抛物线 y=ax 2 向左平移后所得新抛物线的顶点横坐标为-2,且新抛物线经过点(1,3),则 a 的值为 . 4.抛物线 y=(x+2)2 和抛物线 y=(x-2)2 分别是由抛物线 y=x 2 向左、向右平移两个单位得到的. 如果要得到抛物线 y=-(x-4)2 与 y=-(x+7)2 ,应将抛物线 y=-x 2 作怎样的平移? 解:抛物线 y=-x 2 向右平移 4 个单位可得到抛物线 y=-(x-4)2 ,抛物线 y=-x 2 向左平移7 个单位 可得到抛物线 y=-(x+7)2 . 1.y=a(x-h)2 与 y=ax 2 ,y=ax 2 +k 的形状都 2.y=ax2 的顶点(0,0)在原点,y=ax 2 +k 的顶点
免费下载网址htt:jiaoxuesu.ys1.68.com/ 是由a决定的,开口方向、形状都是相同(0,k)在y轴上,y=a(x-h)2的顶点(O,h)在x轴 的,只是它们的图象位置不同 上,y=ax2+k与y=a(x-h)2都可以由y=ax2平移得 当堂达G 1.二次函数y=3(x-2)2图象的对称轴是(A) (A)直线x=2(B)直线x=2 (C)y轴(D)x轴 2.将抛物线y=3x2向左平移3个单位所得的抛物线的函数关系式为(D) (A)y=3x2-3(B)y=3(x-3) (C)y=3x2+3(D)y=3(x+3)2 3.在反比例函数y=中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是 (B) 4抛物线y=4(x-2)2与x轴的交点坐标是(2,0),与y轴的交点坐标为_(O,16) 5.试说明函数y=(x-3)2的图象特点及性质(开口方向、对称轴、顶点坐标、增减性、最值) 解:二次函数y=(x-3)2的图象的开口方向向上,对称轴为直线x=3,顶点坐标为(3,0),当x=3 时,函数有最小值0;当x3时,y随x的增大而增大 解压密码联系qq1119139686加微信公众号 JIaoxuewuyou九折优惠!淘 宝网址; jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 是由 a 决定的,开口方向、形状都是相同 的,只是它们的图象位置不同. (0,k)在 y 轴上,y=a(x-h)2 的顶点(0,h)在 x 轴 上,y=ax 2 +k 与 y=a(x-h)2 都可以由 y=ax 2 平移得 到. 1.二次函数 y=3(x-2)2 图象的对称轴是( A ) (A)直线 x=2 (B)直线 x=-2 (C)y 轴 (D)x 轴 2.将抛物线 y=3x2 向左平移 3 个单位所得的抛物线的函数关系式为( D ) (A)y=3x2 -3 (B)y=3(x-3)2 (C)y=3x2 +3 (D)y=3(x+3)2 3.在反比例函数 y=中,当 x>0 时,y 随 x 的增大而增大,则二次函数 y=k(x-1)2的图象大致是 ( B ) 4.抛物线 y=4 (x-2)2 与 x 轴的交点坐标是 (2,0) ,与 y 轴的交点坐标为 (0,16) . 5.试说明函数 y=(x-3)2 的图象特点及性质(开口方向、对称轴、顶点坐标、增减性、最值). 解:二次函数 y=(x-3)2 的图象的开口方向向上,对称轴为直线 x=3,顶点坐标为(3,0),当 x=3 时,函数有最小值 0;当 x3 时,y 随 x 的增大而增大