第一章:红外和Raman光谱介绍 ·什么是红外光谱?什么是Raman光谱 ·红外谱仪和Raman谱仪 ·红外光谱和Raman光谱方法的特点 ·红外光谱和Raman光谱研究的基本问题
第一章:红外和Raman光谱介绍 • 什么是红外光谱?什么是Raman光谱 • 红外谱仪和 Raman谱仪 • 红外光谱和Raman光谱方法的特点 • 红外光谱和Raman光谱研究的基本问题
红外和Raman光谱举例 The shear mode of multilayer graphene The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic,optical and vibrational properties of graphene. Few-layer graphene(FLG)flakes with less than ten layers each show a distinctive band structure.Thus,there is an increasing interest in the physics and applications of FLGs.Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples.Here,we uncover the interlayer shear mode of FLGs,ranging from bilayer graphene (BLG) to bulk graphite,and suggest that the corresponding Raman peak measures the interlayer coupling.This peak scales from 43 cm-1 in bulk graphite to ~31cm-1 in BLG.Its low energy makes it sensitive to near-Dirac point quasiparticles.Similar shear modes are expected in all layered materials,providing a direct probe of interlayer interactions. nature materials 2012|D0:10.1038/NMAT3245
红外和Raman光谱举例
a 6 1584 k 1.580 Bulk 8LG 1,576 8LG 7孔G (ne)Ausuaju 7LG 6) 1,572 6LG 6LG A4 5LG 5LG 40 4LG m006、 3LG 36 3LG 2LG 32 2LG 8 -40 -20 0 20 40 15601.600 0 01 020.3 04 0.5 Raman shift (cm) 1/N Figure 2 Raman spectra and fits of the C and G peaks as a function of number of layers.a,S/AS Raman spectra for the C peak spectral region(left)and S Raman spectra for the G peak spectral region (right).b,Peak positions Pos(G)(filled black circles)and Pos(C)(open blue circles),as a function of inverse layer number.The red dash-dotted line is a plot of equation(2),open diamonds are DFT calculations.Vertical dashed lines in a and the horizontal line in b are guides to the eye
Quantum memory:Phonons in diamond crystals Time Write pulse Read pulse Optical phonon Q/2 Diamond lattice G Stokes photon Anti-Stokes photon Through Raman scattering,a'write'laser pulse creates a lower-energy Stokes photon(red)and an optical phonon in the diamond lattice.The optical phonon is a single excitation of a vibration mode in which nearest-neighbour carbon atoms move in opposite directions.A'read'laser pulse then converts this phonon into an anti-Stokes photon(blue). Nature Photonics,6,10 (2012)
Through Raman scattering, a 'write' laser pulse creates a lower-energy Stokes photon (red) and an optical phonon in the diamond lattice. The optical phonon is a single excitation of a vibration mode in which nearest-neighbour carbon atoms move in opposite directions. A 'read' laser pulse then converts this phonon into an anti-Stokes photon (blue). Quantum memory: Phonons in diamond crystals Nature Photonics, 6, 10 (2012)
(a) (b 1370cm1 1503cm1 726cm 320J/cm2 A 11J/cm C-C stretching C=O asymmetric 1503 cm-1 ('n'e) A 11J/cm2 stretching 1726cm-1 1370cm aoueqos A-A 11J/cm2 C-N stretching 1800 1600 400 Wavenumber(cm) C-H bending 955cm-1 1.6 A,320J/cm2 1344,1298cm-1 C-C stretching..... A 320J/cm, C-H bending 6 905cm 1 2 Pentacene DR reversed at~33J/cm A,-A,320J/cm 100200300400500600 1450 1350 950 900 850 LPL Exposure(J/cm') Wavenumber(cm) (a)Polarized IR spectra of the Azo-PI film with a LPL exposure of 320 J=cm2.(b)Polarized IR spectra of the pentacene films on 11 J=cm2 and 320 J=cm2 exposed Azo-PI.(c)LPL exposure dependence of DR(A/A)of the Azo-PI films(1370 cm-1 band)and the pentacene films (905 cm-1 band). (Phys.Rev.Lett.,101,236103(2008)
(a) Polarized IR spectra of the Azo-PI film with a LPL exposure of 320 J=cm 2. (b) Polarized IR spectra of the pentacene films on 11 J=cm 2 and 320 J=cm 2 exposed Azo-PI. (c) LPL exposure dependence of DR (A /A) of the Azo-PI films (1370 cm-1 band) and the pentacene films (905 cm-1 band). (Phys. Rev. Lett., 101, 236103 (2008))
2d order G-band 8 HOPG HOPG n=19 6 n=8 ▲·… n=5 n=19 n=4 n=8 n=3 n=2 国同网网 n=1 -5-6cm-1 1600 1500 2000 2500 3000 Wave Number(cm) Raman Frequency Shift(cm1) High-frequency first-and second-order First order-allowed Raman G- micro-Raman spectra of nGL films supported on a SiO2:Si substrate and band for supported nGL films ys number of layers n. HOPG Nan0Let.,6(12),2667(06)
High-frequency first- and second-order micro-Raman spectra of nGL films supported on a SiO2:Si substrate and HOPG First order-allowed Raman Gband for supported nGL films vs number of layers n. Nano Lett., 6 (12), 2667(06)
In situ probing of biological structures by SHINERS. 1,414 b 1,488 1.587 Microscope 人i Sio 1,445 1.6001,648 Au 1.200 1,400 1.600 Raman shift(cm-1) JF Li et al.Nature 464,392-395(2010)doi:10.1038/nature08907 nature
JF Li et al. Nature 464, 392-395 (2010) doi:10.1038/nature08907 In situ probing of biological structures by SHINERS
》 2500 20000- 碳酸钙 碳酸钠 2000 CaCO3 15000 Na,CO3 1500 10000 1000- 5000 500 0- 500 1000 150020002500 3000 500 1000 1500 2000 Raman Shift(cm) Raman Shift(cm) 25000 40000 硫酸钠 20000 硫酸钡 Na SO4 30000 BaSO 15000 20000 10000 5000 10000 0 500 1000 1500 2000 500 1000 1500 2000 Raman Shift(cm) Raman Shift(cm) 35000 70000- 30000 硝酸铵 60000 硝酸银 25000 NH NO3 50000 AgNO3 20000 40000 15000 30000 10000 20000 5000 10000 500 1000 1500 2000 500 1000 1500 2000 Raman Shift(cm) Raman Shift(cm)
25000, 200000 硼酸 20000- H2BO3 斜方疏品体 150000 15000, 100000 10000 5000 50000 500 10001500 206 500 10001500 2000 Raman Shift (cm") Raman Shift (cm") 10000 氧化钛TiO2) 40000 二氯甲烷(CH2C) 用外置样品池所测量的钢 所示的是用Dimension-P1M 8000 网上的二氧化钛 SR采集的光谱,说明可用宽波数 30000 厦盖范围做全范围拉曼分析 6000 20000 4000 2000 10000 0 人 500 1000 1500 2000 500 1000150020002500 3000 Raman Shift (cm) Raman Shift (cm")
Raman Spectrum of Si (300 K Rayleigh(Elastic)Scattering Actually the effect is MUCH stronger Stokes than Raman scattering 1storder Anti-Stokes Stokes order 2dorder -500 0 500 1000 Raman Shift(cm 更全面了解Raman Spectrum
Raman Intensity (a.u.) -500 0 500 1000 Raman Shift (cm-1) Rayleigh (Elastic) Scattering Actually the effect is MUCH stronger than Raman scattering Anti-Stokes 1st order Stokes 1st order Stokes 2nd order Raman Spectrum of Si (300 K) 更全面了解Raman Spectrum