动能方程 用u,v,w分别与x,y,z方向的动量方程 相乘,然后把所得三式相加 Du Dy Dy P(u-tv+w=pluf ++wf) OT OT 00 +v x ot ot do + OX OZ
1动能方程 用u,v,w分别与x,y,z方向的动量方程 相乘,然后把所得三式相加 ( ) ( ) ( ) ( } ( ) x y z w x y z v x y z u uf v f wf Dt Dw w Dt Dv v Dt Du u z yz xz z y xx xy z x yx xx x y z + + + + + + + + + + + = + +
上式中等号左边的项可以写成动能变化的形式 Du D D Du2 Dv 2 Dw 2 p(u Dt +1 }=p( Dt Dt 2 Dt Dt Dt 1D2 DY 2 t Dt 利用彻体力等于负的位能的梯度f计〔+!=V中上 式中等号右边的第一项可以写位能势的全导数形式 pluf +uf+wf=-p(u+v+w D Dt 其中g是彻体力的势能
上式中等号左边的项可以写成动能变化的形式 Dt DV V Dt DV Dt Dw Dt Dv Dt Du Dt Dw w Dt Dv v Dt Du u = + + = + + 2 2 2 2 2 1 ( } 2 1 ( } 利用彻体力等于负的位能的梯度.fx i+fy j+fzk=- 上 式中等号右边的第一项可以写位能势的全导数形式 其中是彻体力的势能 Dt D z w y v x uf v f w f u x y z = − + + ( + + ) = − ( )
把这动能和位能两个式子带入由动量合成的方程 2-4-1)得 D,D000x,0rx,0 +p-=l( D Dt Dt OX OT xy 007 + + +w y2 00 上式左端也可以写成 1D2D0 +p 2 Dt Dt 此方程叫动能方程
把这动能和位能两个式子带入由动量合成的方程 (2-4-1)得 • 此方程叫动能方程 Dt D Dt DV x y z w x y z v x y z u Dt D Dt DV V z yz xz z y xx xy z x yx xx + + + + + + + + + + = 2 2 1 : ( ) ( ) ( ) 上式左端也可以写成
2内能方程 根据能量守恒定律: 微元内的能量增加=压力和粘应力做功+流入热量 A b+ 而物体内部能量A为: p dx dy a(e+1/2+小) 增加为:pDe+1/2四+d)/ Dt dx dy dz 流体微元的能量不仅有内能e,还有动能l2V和 位能ψ.后面的讨论经常忽略不计
根据能量守恒定律: 微元内的能量增加=压力和粘应力做功+流入热量 A = B + C 而物体内部能量A为: dx dy dz (e + 1/2 V2+ ) 增加为: D (e + 1/2 V2+ ) /Dt dx dy dz 流体微元的能量不仅有内能e ,还有动能1/2 V2和 位能 .后面的讨论经常忽略不计 2 内能方程
在单位时间内, 该流体微元的能量增量可写成 已 d pdxdydz(+v-1) dt dt 14
( ) dt dV V dt de dxdydz + 在单位时间内, 该流体微元的能量增量可写成 14
B流体微元应力和表面压力所做的功 应力τ XX P+dP Styx 做功:τxu CVX P+dP WT P 应力Tx+dτx做功 P+dP t ut Ot w/ax 14
B 流体微元应力,和表面压力所做的功 应力xx+d xx做功: xx u+ xx u/x zx+d zx P+dP P+dP P+dP u yx vyx w yx P 应力xx 做功:xx u 14
B流体微元和y垂直表面x方向应力所做的功 P+dI +d做功 u y dxdydz WT P U和应力τ在x方向做功 上下两面相差 a(T yx u)/ay dxdyd ut. dxdydz yx
B 流体微元和y垂直表面x方向应力所做的功 yx+d zx P+dP u yx vyx w yx P 应力yx+d yx做功: [yx u+ (yx u)/y]dxdydz U和应力yx在x方向做功 uyx dxdydz 上下两面相差 (yx u)/y dxdydz
B流体微元x方向应力在和z垂直表面所做的功 u在x方向做功uz P+dPⅴyy dxdydz CVX WT P 应力τ+dτx做功 前后相差 (tzx ut axx u/oz)dxdydz d(Tx u/azdxdydz
B 流体微元x方向应力在和z垂直表面所做的功 zx+d zx P+dP u yx vyx w yx P u在x方向做功 -uzx dxdydz 应力zx+d zx做功: (zx u+ zx u/z)dxdydz 前后相差 (zx u)/zdxdydz
B流体微元x向应力在和在和ⅹ垂直表面所做的功 应力τ、做功τu Styx u tyX W TyX P u在x方向做功 应力x+dτx做功: uty dxdyd TfaT (txx ut at 左右相差 T- u XX /oxdxdydz
B 流体微元x向应力在和在和x垂直表面所做的功 应力xx+d xx做功: (xx u+ (xx u)/x)dxdydz zx+d zx P+dP u yx vyx w yx P 应力xx做功xx u u在x方向做功 uxx dxdydz 左右相差 (xx u ) /xdxdydz
以上计算的才仅仅是速度u在 三个表面上和纯粘性应力结 合所作的功 还应当有速度v所作的功 速度w所作的功 以及速度uV,w对压力p所作的功 下面求V所作的功办法相同 [(up),x+(v p)t(w p),ldxdydz=-Ve(pv)
以上计算的才仅仅是速度u在 三个表面上和纯粘性应力结 合所作的功 还应当有速度v所作的功 速度w所作的功 以及速度u,v,w对压力p所作的功 下面求v所作的功办法相同 -[(u p), x+(v p),y+(w p),z]dxdydz=-•(pV)