当前位置:高等教育资讯网  >  中国高校课件下载中心  >  大学文库  >  浏览文档

四川外语学院:《科技翻译》课程教学资源_week 3_科技翻译作业1:智能制造

资源类别:文库,文档格式:DOC,文档页数:2,文件大小:15.5KB,团购合买
点击下载完整版文档(DOC)

翻译下面的段落,并写出对科技术语翻译的体会 a new digital revolution is coming. this time in fabrication It draws on the same sights that led to the earlier digitizations of communication and computation but now what is being programmed is the physical world rather than the virtual one Digital fabrication will allow individuals to design and produce tangible objects on demand, wherever and whenever they need them. widespread access to these technologies will challenge trad itional models of business, aid, and education The roots of the revolution date back to 1952. when researchers at the Massachusetts Institute of Technology(MIT) wired an early digital computer to a milling mach ine, creating the first numerically controlled machine tool. By using a computer program instead of a machinist to turn the screws that moved the metal stock, the researchers were able to produce aircraft components with shapes that were more complex than could be made by hand. From that first revolving end mill, all sorts of cutting tools have been mounted on computer-controlled platforms, includ ing jets of water abrasives that can cut through hard materials, lasers that can quickly carve fine features, and slender electrically charged wires that can make long thin CutS Today, numerically controlled machines touch almost every commercial product whether directly(producing everything from laptop cases to jet engines ) or ind irectly (producing the tools that mold and stamp mass-produced goods ). And yet all these modern descendants of the first numerically controlled machine tool share its original limitation: they can cut, but they cannot reach internal structures. This means, for example, that the axle of a wheel must be manufactured separately from the bearing it passes through In the 1980S, however, computer-controlled fabrication processes that added rather than removed material (called add itive manufacturing) came on the market Thanks to 3-D printing, a bearing and an axle could be built by the same machine at me time. A range of 3-D printing processes are now available, including thermally fusing plastic filaments, using ultraviolet light to cross-link poly mer resins

翻译下面的段落,并写出对科技术语翻译的体会。 A new digital revolution is coming, this time in fabrication. It draws on the same insights that led to the earlier digitizations of communication and computation, but now what is being programmed is the physical world rather than the virtual one. Digital fabrication will allow individuals to design and produce tangible objects on demand, wherever and whenever they need them. Widespread access to these technologies will challenge traditional models of business, aid, and education. The roots of the revolution date back to 1952, when researchers at the Massachusetts Institute of Technology (MIT) wired an early digital computer to a milling machine, creating the first numerically controlled machine tool. By using a computer program instead of a machinist to turn the screws that moved the metal stock, the researchers were able to produce aircraft components with shapes that were more complex than could be made by hand. From that first revolving end mill, all sorts of cutting tools have been mounted on computer-controlled platforms, including jets of water abrasives that can cut through hard materials, lasers that can quickly carve fine features, and slender electrically charged wires that can make long thin cuts. Today, numerically controlled machines touch almost every commercial product, whether directly (producing everything from laptop cases to jet engines) or indirectly (producing the tools that mold and stamp mass-produced goods). And yet all these modern descendants of the first numerically controlled machine tool share its original limitation: they can cut, but they cannot reach internal structures. This means, for example, that the axle of a wheel must be manufactured separately from the bearing it passes through. In the 1980s, however, computer-controlled fabrication processes that added rather than removed material (called additive manufacturing) came on the market. Thanks to 3-D printing, a bearing and an axle could be built by the same machine at the same time. A range of 3-D printing processes are now available, including thermally fusing plastic filaments, using ultraviolet light to cross-link polymer resins

depositing adhesive droplets to bind a powder, cutting and laminating sheets of paper, and shining a laser beam to fuse metal particles. Businesses already use 3-D printers to model products before producing them, a process referred to as rapid prototyping Companies also rely on the technology to make objects with complex shapes, such as jewelry and medical implants. Research groups have even used 3-d printers to build structures out of cells with the goal of printing living organs

depositing adhesive droplets to bind a powder, cutting and laminating sheets of paper, and shining a laser beam to fuse metal particles. Businesses already use 3-D printers to model products before producing them, a process referred to as rapid prototyping. Companies also rely on the technology to make objects with complex shapes, such as jewelry and medical implants. Research groups have even used 3-D printers to build structures out of cells with the goal of printing living organs

点击下载完整版文档(DOC)VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
已到末页,全文结束
相关文档

关于我们|帮助中心|下载说明|相关软件|意见反馈|联系我们

Copyright © 2008-现在 cucdc.com 高等教育资讯网 版权所有