翻译下面的段落,并写出翻译总结。 a new digital revolution is coming. this time in fabrication It draws on the same sights that led to the earlier digitizations of communication and computation but now what is being programmed is the physical world rather than the virtual one Digital fabrication will allow individuals to design and produce tangible objects on demand, wherever and whenever they need them. widespread access to these technologies will challenge trad itional models of business, aid, and education The roots of the revolution date back to 1952. when researchers at the Massachusetts Institute of Technology(MIT) wired an early digital computer to a milling mach ine, creating the first numerically controlled machine tool. By using a computer program instead of a machinist to turn the screws that moved the metal stock, the researchers were able to produce aircraft components with shapes that were more complex than could be made by hand. From that first revolving end mill, all sorts of cutting tools have been mounted on computer-controlled platforms, includ ing jets of water abrasives that can cut through hard materials, lasers that can quickly carve fine features, and slender electrically charged wires that can make long thin CutS Today, numerically controlled machines touch almost every commercial product whether directly(producing everything from laptop cases to jet engines ) or ind irectly (producing the tools that mold and stamp mass-produced goods ) And yet all these modern descendants of the first numerically controlled machine tool share its original limitation: they can cut, but they cannot reach internal structures. This means, for example, that the axle of a wheel must be manufactured separately from the bearing it passes through
翻译下面的段落,并写出翻译总结。 A new digital revolution is coming, this time in fabrication. It draws on the same insights that led to the earlier digitizations of communication and computation, but now what is being programmed is the physical world rather than the virtual one. Digital fabrication will allow individuals to design and produce tangible objects on demand, wherever and whenever they need them. Widespread access to these technologies will challenge traditional models of business, aid, and education. The roots of the revolution date back to 1952, when researchers at the Massachusetts Institute of Technology (MIT) wired an early digital computer to a milling machine, creating the first numerically controlled machine tool. By using a computer program instead of a machinist to turn the screws that moved the metal stock, the researchers were able to produce aircraft components with shapes that were more complex than could be made by hand. From that first revolving end mill, all sorts of cutting tools have been mounted on computer-controlled platforms, including jets of water abrasives that can cut through hard materials, lasers that can quickly carve fine features, and slender electrically charged wires that can make long thin cuts. Today, numerically controlled machines touch almost every commercial product, whether directly (producing everything from laptop cases to jet engines) or indirectly (producing the tools that mold and stamp mass-produced goods). And yet all these modern descendants of the first numerically controlled machine tool share its original limitation: they can cut, but they cannot reach internal structures. This means, for example, that the axle of a wheel must be manufactured separately from the bearing it passes through