2003年天津市大学数学竞赛试题(经济管理类) 一.填空(本题15分,每空3分,请将最终结果填在相应的横线上面 1.设对一切实数x利y,恒有f(x+y)=f(x)+109)且知(2)=1,则f()= In(+i)at -2e2+1 ,在x=0处连续,则 3.设f(x,yz)=e‘yz2,其中z=x(xy是由方程x+y+2+xz=0所确定的隐函数 f(0.1-1) x(1+x2) 5.设 x=以() y=k2,其中叫 具有二阶导数,则“x= 二.选择题(本题15分,每小题3分。每各小题的四个选项中仅有一个是正确的,把你 认为“正确选项”前的字母填在括号内。选对得分;选错、不选或选出的答案多于一个 不得分) 1.当x→0时,下列无穷小量 (1)√+tanx-√1+sinx 2)√1+2x-41+3x -cos x)sinx 从低阶到高阶的排列顺序为() (A)(1)(2)(3)(4)(B)(3)(1)(2)1(4)(C)(4)(3)(2) (D)(4)(2)(1)(3) 2.设(0-Fxx0,在x=处存在最高阶导数的阶数为() 4)1阶 3)2阶 (C)3 )4阶 3.设函数y=(在x=1处又连续的导函数,又回m21=2.则x=1是() A)函数y=f(x)的极大值点;(B)函数y=f(x)的极小值点 (C)曲线y=f(x)拐点的横坐标 D)以上答案均不正确 4,设函数∫g在区阿ab上连续,且g(x)<f(x)<m(m为常数),则曲线 y=g(x)y=f(x)x=a和x=b所围平面图形绕直线y=m旋转而成的旋转体体积为() (A) x[[2m-(x)-g()L/(x)-x(x)]dr (B)*[12m-f(x)+g(x)f()-g(x)l c)xlIm-f(x)+g(x)IL/(x)-g(x))d:
(D)#lm-f(x)-g(x)lL/(x)-g(x)) 5.设f(a)是关于u的奇函数,D是由x=1y=x,y=1所围成的平面区域,则∫1x2+f()d= (A)0 (B)1 三,(6分)ab,c为何值时,下式成立m1d=c 四,(6分)设函数f(x) 9(x)-c0sx.x≠0,其中q(x)具有连续的二阶导函数,且(O)=1 (1)确定a的值,使f(x)在点x=0处可导,并求厂(x) (2)讨论(x)在点x=0处的连续性 五,(6分)设正值函数x)在+∞)上连续,求函数 F(x)=K2+mx)-(+hf(h的最小值点 六.(6分)设y(x)=am(x-,且y()=0.求∫yxk 七(7分)设变映一+0、,把方程2:-y92-1=0化为三=0 00.在曲线y=f(x) (x) 十.(7分)设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且 f(0)=0,f(1)=1.试证明:对于任意给定的正数a和b,在开区间(0,1)内存在不同的5和n +-(7分)设F()=-20+c)+(x-0y“d,试证明在区间[-1,1上F(a)有且仅有两 个实根 十二.(8分)设函数f(xy)在单位圆域上有连续的偏导数,且在边界上的值恒为零,证明: 00=2计y,其中D为以5+y