免费下载网址http:/jiaoxue5u.ys168.com/ 第17章一元二次方程 二一元二次方程的应用 教学课题§17.3列方程解应用题 第2课时增长率问题 教学目标:1使学生会用列一元二次方程的方法解决有关增长率问题 进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培 养学生用数学的意识 教学重点:学会用列方程的方法解决有关增长率问题 教学难点:有关增长率之间的数量关系.分清增长,增长了,增长到:扩大,扩大到,扩大 了等词语 教学过程 复习提问 (1)原产量+增产量=实际产量 (2)单位时间增产量=原产量×增长率 (3)实际产量=原产量×(1+增长率) 本节课要研究的一元二次方程的应用——有关增长率的应用题 二.讲授新课 例1、某乡产粮大户,1995年粮食产量为50吨,由于加强了经营和科学种田,1997年粮食 产量上升到60.5吨.求平均每年增长的百分率 分析:1995年粮食产量为50吨为基数,设平均每年增长的百分率为x,则 年份1995年 1996年 1997年 解:设平均每年增长的百分率为x,根据题意,得 (1+x)=121 1+X=±1.1 2.1 经检验,它们都是原方程的解,但x2=2.1不符合题意,舍去。 答:设平均每年增长的百分率为10% 例2、某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分 数相同,求每次降价百分之几 分析:设每次降价为x 第一次降价后,每件为600-600x=600(1-x)(元) 第二次降价后,每件为600(1-x)-600(1-x)·x=600(1-x)2(元) 解:设每次降价为x,据题意得 600(1-x)2=384. 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 第 17 章 一元二次方程 二 一元二次方程的应用 教学课题§17.3 列方程解应用题 第 2 课时 增长率问题 教学目标: 1 使学生会用列一元二次方程的方法解决有关增长率问题. 2进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培 养学生用数学的意识. 教学重点:学会用列方程的方法解决有关增长率问题. 教学难点:有关增长率之间的数量关系.分清增长,增长了,增长到;扩大,扩大到,扩大 了等词语. 教学过程: 一.复习提问 (1)原产量+增产量=实际产量. (2)单位时间增产量=原产量×增长率. (3)实际产量=原产量×(1+增长率). 本节课要研究的一元二次方程的应用——有关增长率的应用题. 二.讲授新课 例 1、某乡产粮大户,1995 年粮食产量为50 吨,由于加强了经营和科学种田,1997 年粮食 产量上升到 60.5 吨.求平均每年增长的百分率. 分析:1995 年粮食产量为50 吨为基数,设平均每年增长的百分率为 x ,则 年份 1995 年 1996 年 1997 年 产量 50 吨 解:设平均每年增长的百分率为 x ,根据题意,得 ( ) ( ) 2 2 1 2 50 1 60.5 1 1.21 1 1.1 x =0.1, x =-2.1 x x x + = + = + = 经检验,它们都是原方程的解,但 2 x =-2.1 不符合题意,舍去。 答:设平均每年增长的百分率为 10%. 例 2、 某产品原来每件 600 元,由于连续两次降价,现价为 384 元,如果两个降价的百分 数相同,求每次降价百分之几? 分析:设每次降价为 x. 第一次降价后,每件为 600-600x=600(1-x)(元). 第二次降价后,每件为 600(1-x)-600(1-x)·x=600(1-x)2(元). 解:设每次降价为 x,据题意得 600(1-x) 2 =384.
免费下载网址ht:/ jiaoxue5uys168com/ x1=0.2,x2=1.8(不合题意,舍去) 答:平均每次降价为20% 小结:例题类型为 基本规律是 A代表基数,x代表增长的百分数,则第一次增长后的表达式为 第二次增长后的表达式为 所列方程形式为a(1+x)2=b A代表基数,x代表降低的百分数,则第一次降低后的表达式为 第二次降低后的表达式为 所列方程形式为a(1-x)2=b 巩固练习,提高深化 练习1:舟山市按“九五”国民经济发展规划要求,1997年的社会总产值要比1995年增长 21%,求平均每年增长的百分率.(提示:基数为1995年的社会总产值,可视为1) 分析:若设平均每年增长的百分率为x,1995年的社会总产值为1,则 年份 1995年 1996年 1997年 社会总产值 1 练习2:某种手表,原来每只售价96元,经过连续2次降价后,现在每只售价54元,平均 每次降价的百分率是多少? 分析:基数为 ,第一次降价后售价为 元,第二次降价后售价 元.(注意:此问题为降价的百分率) 四.总结、扩展 1.本解例题是有关增长率问题,它的基本关系式是:基数×(1+平均增长率)=实际数 2.在解方程时,注意巧算:注意方程两根的取舍问题 我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率 五.布置作业:课本P130A组4,5P13717,18 六.教学反思 1.本课时教学内容主要是增长率问题,增长率问题的认知前提是熟悉增长率基数(a)、平 均增长幅度(x)、增长间隔时段(n)和增长幅度(b)之间的关系。在应用。元二次方 程时,n的值为2。 2.在应用题教学中,要注意解答的完整性,引导学生对最后答案进行反思与取舍 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com (1 -x) 2 = 25 16 1- x= 5 4 x1=0.2,x2=1. 8(不合题意,舍去) 答:平均每次降价为 20%. 三.巩固练习,提高深化 练习 1:舟山市按“九五”国民经济发展规划要求,1997 年的社会总产值要比 1995 年增长 21%,求平均每年增长的百分率.(提示:基数为 1995 年的社会总产值,可视为 1) 分析:若设平均每年增长的百分率为 x ,1995 年的社会总产值为 1,则 年份 1995 年 1996 年 1997 年 社会总产值 1 练习 2:某种手表,原来每只售价 96 元,经过连续 2 次降价后,现在每只售价 54 元,平均 每次降价的百分率是多少? 分析:基数为 ,第一次降价后售价为 元,第二次降价后售价 为 元.(注意:此问题为降价的百分率) 四.总结、扩展 1.本解例题是有关增长率问题,它的基本关系式是:基数× n (1+平均增长率) =实际数. 2.在解方程时,注意巧算;注意方程两根的取舍问题. 3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率. 五.布置作业:课本 P130 A 组 4,5 P137 17,18 六.教学反思: 1. 本课时教学内容主要是增长率问题,增长率问题的认知前提是熟悉增长率基数(a)、平 均增长幅度(x)、增长间隔时段(n)和增长幅度(b)之间的关系。在应用 一元二次方 程时,n 的值为 2。 2. 在应用题教学中,要注意解答的完整性,引导学生对最后答案进行反思与取舍。 小结:例题类型为 ,基本规律是: A 代表基数, x 代表增长的百分数,则第一次增长后的表达式为 , 第二次增长后的表达式为 ,所列方程形式为 a(1+x)2 =b. A 代表基数, x 代表降低的百分数,则第一次降低后的表达式为 , 第二次降低后的表达式为 ,所列方程形式为 a(1-x)2 =b.