Outline 第 讲 复变函数 北京大学物理学院 数学物理方法课程组 2007年春
Outline 1 ù E C ¼ ê ®Æ ÔnÆ êÆÔn{§| 2007cS C. S. Wu 1ù EC¼ê
Outline 讲授要点 ③复数及其运算规则 复数:定义 复数的几何表示 复数序 复数序列 序列极限 极限与连
Outline ùÇ: 1 Eê9Ù$5K E굽 EêAÛL« 2 EêS EêS S4 3 EC¼ê ½Â 4ëY á: C. S. Wu 1ù EC¼ê
Outline 讲授要点 ③复数及其运算规则 复数:定义 复数的几何表示 ②复数序列 复数序列 序列极限 ③复变函数 定义 极限与连续 无穷远点
Outline ùÇ: 1 Eê9Ù$5K E굽 EêAÛL« 2 EêS EêS S4 3 EC¼ê ½Â 4ëY á: C. S. Wu 1ù EC¼ê
Outline 讲授要点 ③复数及其运算规则 复数:定义 复数的几何表示 ②复数序列 复数序列 序列极限 ③复变函数 定义 ●极限与连续 无穷远点
Outline ùÇ: 1 Eê9Ù$5K E굽 EêAÛL« 2 EêS EêS S4 3 EC¼ê ½Â 4ëY á: C. S. Wu 1ù EC¼ê
References 吴崇试,《数学物理方法》,第1章
Complex Numbers & Complex Algebra Complex Sequence Function of a Complex Variable References ÇÂÁ§5êÆÔn{6§11Ù ù&§5êÆÔn{6§§1.1, 1.2 nÎ!X1Á§5êÆÔn{6§§1.1 C. S. Wu 1ù EC¼ê
References 吴崇试,《数学物理方法》,第1章 梁昆淼,《数学物理方法》,§1.1,1.2 学物理方
Complex Numbers & Complex Algebra Complex Sequence Function of a Complex Variable References ÇÂÁ§5êÆÔn{6§11Ù ù&§5êÆÔn{6§§1.1, 1.2 nÎ!X1Á§5êÆÔn{6§§1.1 C. S. Wu 1ù EC¼ê
References 吴崇试,《数学物理方法》,第1章 梁昆淼,《数学物理方法》,§1.1,1.2 胡嗣柱、倪光炯,《数学物理方法》,§1.1
Complex Numbers & Complex Algebra Complex Sequence Function of a Complex Variable References ÇÂÁ§5êÆÔn{6§11Ù ù&§5êÆÔn{6§§1.1, 1.2 nÎ!X1Á§5êÆÔn{6§§1.1 C. S. Wu 1ù EC¼ê
讲授要点 ③复数及其运算规则 ●复数:定义 复数的几何表示 复数序列 复数序列 序列极限 ③复变函数 定义 。极限与连续 。无穷远点
Complex Numbers & Complex Algebra Complex Sequence Function of a Complex Variable Complex Numbers: Definition Geometric Representation ùÇ: 1 Eê9Ù$5K E굽 EêAÛL« 2 EêS EêS S4 3 EC¼ê ½Â 4ëY á: C. S. Wu 1ù EC¼ê
复数的定义 设有一对有序实数(a,b),遵从下列运算规则
Complex Numbers & Complex Algebra Complex Sequence Function of a Complex Variable Complex Numbers: Definition Geometric Representation Eê½Â kékS¢ê(a, b)§le$5Kµ \{ (a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) ¦{ (a, b)(c, d) = (ac − bd, ad + bc) K¡ùékS¢ê(a, b)½Â Eêα α = (a, b) a¡α¢Ü§b¡αJÜ a = Re α b = Im α C. S. Wu 1ù EC¼ê
复数的定义 设有一对有序实数(a,b),遵从下列运算规则 加法(a1,b)+(a2,b2)=(a1+a2,b+b2 有序实数(.b)定义
Complex Numbers & Complex Algebra Complex Sequence Function of a Complex Variable Complex Numbers: Definition Geometric Representation Eê½Â kékS¢ê(a, b)§le$5Kµ \{ (a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) ¦{ (a, b)(c, d) = (ac − bd, ad + bc) K¡ùékS¢ê(a, b)½Â Eêα α = (a, b) a¡α¢Ü§b¡αJÜ a = Re α b = Im α C. S. Wu 1ù EC¼ê